[1] |
齐旭 . 车路协同系统:解决交通拥堵是目的[N]. 中国电子报, 2021-10-01(7).
|
|
QI X . Vehicle-road collaboration system:solving traffic congestion is the goal[N]. China Electronics News, 2021-10-01(7).
|
[2] |
RAHIMI-FARAHANI H , RASSAFI A A , MIRBAHA B . Forced-node route guidance system:incorporating both user equilibrium and system optimal benefits[J]. IET Intelligent Transport Systems, 2019,13(12): 1851-1859.
|
[3] |
LI Y , YU R , SHAHABI C ,et al. Diffusion convolutional recurrent neural network:Data-driven traffic forecasting[J]. arXiv preprint arXiv:1707.01926, 2017.
|
[4] |
GUO S N , LIN Y F , FENG N ,et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]// Proceedings of the AAAI Conference on Artificial Intelligence[S.l.:s.n.], 2019: 922-929.
|
[5] |
JIANG M R , CHEN W , LI X . S-GCN-GRU-NN:a novel hybrid model by combining a spatiotemporal graph convolutional network and a gated recurrent units neural network for short-term traffic speed forecasting[J]. Journal of Data,Information and Management, 2021,3(1): 1-20.
|
[6] |
PIASCIK R , VICKERS J , LOWRY D ,et al. Technology area 12:materials,structures,mechanical systems,and manufacturing road map[J]. NASA Office of Chief Technologist, 2010: 15-88.
|
[7] |
BRUNNER P , DENK F , HUBER W ,et al. Virtual safety performance assessment for automated driving in complex urban traffic scenarios[C]// Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC). Piscataway:IEEE Press, 2019: 679-685.
|
[8] |
HU C , FAN W C , ZENG E ,et al. Digital twin-assisted real-time traffic data prediction method for 5g-enabled Internet of vehicles[J]. IEEE Transactions on Industrial Informatics, 2022,18(4): 2811-2819.
|
[9] |
ALAM K M , EL SADDIK A . C2PS:a digital twin architecture reference model for the cloud-based cyber-physical systems[J]. IEEE Access, 2017(5): 2050-2062.
|
[10] |
DU W J , ZHANG T F , ZHANG G G ,et al. A digital twin framework and an implementation method for urban rail transit[C]// Proceedings of 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing). Piscataway:IEEE Press, 2021: 1-4.
|
[11] |
ZHAO L , HAN G J , LI Z H ,et al. Intelligent digital twin-based software-defined vehicular networks[J]. IEEE Network, 2020,34(5): 178-184.
|
[12] |
PAN Y H , WU N Q , QU T ,et al. Digital-twin-driven production logistics synchronization system for vehicle routing problems with pick-up and delivery in industrial park[J]. International Journal of Computer Integrated Manufacturing, 2021,34(7/8): 814-828.
|
[13] |
曹佳钰, 冷甦鹏, 张科 . 面向自动驾驶应用的车联多智能体信息融合协同决策机制研究[J]. 物联网学报, 2020,4(3): 69-77.
|
|
CAO J Y , LENG S P , ZHANG K . Multi-agent driven collaborative decision mechanism of information fusion for autonomous driving vehicles[J]. Chinese Journal on Internet of Things, 2020,4(3): 69-77.
|
[14] |
詹全 . 闭环数字孪生智慧交通管理系统[J]. 中国交通信息化, 2021(10): 107-109.
|
|
ZHAN Q . Closed-loop digital twin intelligent traffic management system[J]. China ITS Journal, 2021(10): 107-109.
|
[15] |
康宇, 刘雅琼, 赵彤雨 ,等. AI 算法在车联网通信与计算中的应用综述[J]. 电信科学, 2023,39(1): 1-19.
|
|
KANG Y , LIU Y Q , ZHAO T Y ,et al. A survey on AI algorithms applied in communication and computation in Internet of vehicles[J]. Telecommunications Science, 2023,39(1): 1-19.
|
[16] |
ROZEMBERCZKI B , SCHERER P , HE Y X ,et al. PyTorch geometric temporal:spatiotemporal signal processing with neural machine learning models[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York:ACM Press, 2021: 4564-4573.
|
[17] |
NAHUM-SHANI I , QIAN M , ALMIRALL D ,et al. Q-learning:a data analysis method for constructing adaptive interventions[J]. Psychological Methods, 2012,17(4): 478-494.
|
[18] |
LOWE R , WU Y , TAMAR A ,et al. Multi-agent actor-critic for mixed cooperative-competitive environments[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM Press, 2017: 6382-6393.
|
[19] |
MNIH V , KAVUKCUOGLU K , SILVER D ,et al. Human-level control through deep reinforcement learning[J]. Nature, 2015,518(7540): 529-533.
|
[20] |
唐慕尧, 周大可, 李涛 . 结合状态预测的深度强化学习交通信号控制[J]. 计算机应用研究, 2022: 1-6.doi:10.19734/j.issn.1001-3695.2021.12.0704.
|
|
TANG M Y , ZHOU D K , LI T . Deep reinforcement learning traffic signal control combined with state prediction[J]. Application Research of Computers, 2022: 1-6.doi:10.19734/j.issn.1001-3695.2021.12.0704.
|
[21] |
PENG Z , LI Q , HUI K M ,et al. Learning to simulate self- driven particles system with coordinated policy optimization[J]. Advances in Neural Information Processing Systems, 2021(34): 10784-10797.
|
[22] |
LOPEZ P A , BEHRISCH M , BIEKER-WALZ L ,et al. Microscopic traffic simulation using SUMO[C]// Proceedings of 2018 21st International Conference on Intelligent Transportation Systems (ITSC). Piscataway:IEEE Press, 2018: 2575-2582.
|