[1] |
SAKAKI T , OKAZAKI M , MATSUO Y . Earthquake shakes Twitter users:real-time event detection by social sensors[C]// Proceedings of the 19th International Conference on World Wide Web. NewYork:ACM Press, 2010: 851-860.
|
[2] |
KINSELLA S , MURDOCK V , O’HARE N . “I’m eating a sandwich in Glasgow”:modeling locations with tweets[C]// Proceedings of the 3rd International Workshop on Search and Mining User-generated Contents. NewYork:ACM Press, 2011: 61-68.
|
[3] |
PAUL M J , DREDZE M . You are what your Tweet:analyzing twitter for public health[J]. Artificial Intelligence, 2011(38): 265-272.
|
[4] |
DO T H , NGUYEN D M , TSILIGIANNI E ,et al. Multiview deep learning for predicting twitter users’ location[J]. arXiv preprint, 2017,arXiv:1712.08091.
|
[5] |
WING B , BALDRIDGE J . Simple supervised document geolocation with geodesic grids[C]// Meeting of the Association for Computational Linguistics:Human Language Technologies. DBLP, 2012.
|
[6] |
HAN B , COOK P , BALDWIN T . Geolocation prediction in social media data by finding location indicative words[J]. 24th International Conference on Computational Linguistics - Proceedings of COLING 2012:Technical Papers, 2012: 1045-1062.
|
[7] |
RAHIMI A , COHN T , BALDWIN T . A neural model for user geolocation and lexical dialectology[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume2:Short Papers). Stroudsburg:Associationfor Computational Linguistics, 2017: 209-216.
|
[8] |
JURGENS D . That’s what friends are for:inferring location in online social media platforms based on social relationships[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2021,7(1): 273-282.
|
[9] |
WANG F J , LU C T , QU Y Z ,et al. Collective geographical embedding for geolocating social network users[M]// Advances in Knowledge Discovery and Data Mining. Cham: Springer International Publishing, 2017: 599-611.
|
[10] |
HUANG B X , CARLEY K . A hierarchical location prediction neural network for twitter user geolocation[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg:Associationfor Computational Linguistics, 2019: 4731-4741.
|
[11] |
RAHIMI A , COHN T , BALDWIN T . Semi-supervised user geolocation via graph convolutional networks[J]. 2018: 2009-2019.DOI:10.18653/v1/P18-1187.
|
[12] |
RAHIMI A , VU D , COHN T ,et al. Exploiting text and network context for geolocation of social media users[J]. 2015: 1362-1367.DOI:10.3115/v1/N15-1153.
|
[13] |
SCALIA G , FRANCALANCI C , PERNICI B . CIME:context-aware geolocation of emergency-related posts[J]. GeoInformatica, 2022,26(1): 125-157.
|
[14] |
ZHENG C , JIANG J Y , ZHOU Y C ,et al. Social media user geolocation via hybrid attention[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM Press, 2020: 1641-1644.
|
[15] |
ALEXIS C , KIELA D . SentEval:an evaluation toolkit for universal sentence representations[J]. arXiv preprint, 2018,arXiv:1803.05449.
|
[16] |
REIMERS N , GUREVYCH I . Sentence-BERT:sentence embeddings using Siamese BERT-networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg:Association for Computational Linguistics, 2019: 3980-3990.
|
[17] |
GAO T Y , YAO X C , CHEN D Q . SimCSE:simple contrast ivelearning of sentence embeddings[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Associationfor Computational Linguistics, 2021: 6894-6910.
|
[18] |
GIORGI J , NITSKI O , WANG B ,et al. DeCLUTR:deep contrastive learning for unsupervised textual representations[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:Long Papers). Stroudsburg:Association for Computational Linguistics, 2021: 879-895.
|
[19] |
CER D , YANG Y , KONG S Y ,et al. Universal sentence encod-er[J]. 2018: 169-174.DOI:10.18653/v1/D18-2029.2018.
|
[20] |
HUANG J J , TANG D Y , ZHONG W J ,et al. WhiteningBERT:an easy unsupervised sentence embedding approach[C]// Proceedings of Findings of the Association for Computational Linguistics:EMNLP 2021. Stroudsburg:Associationfor Computational Linguistics, 2021: 238-244.
|
[21] |
LI B H , ZHOU H , HE J X ,et al. On the sentence embeddings from pre-trained language models[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg:Association for Computational Linguistics, 2020: 9119-9130.
|
[22] |
SU J , CAO J , LIU W ,et al. Whitening sentence representations for better semantics and faster retrieval[J]. arXiv preprint, 2021,arXiv:2103.15316.
|
[23] |
CARLSSON F , GYLLENSTEN A C , GOGOULOU E ,et al. Semantic re-tuning with contrastive tension[C]// In 9th International Conference on Learning Representations,Austria:Virtual Event, 2021.
|
[24] |
KIM T , YOO K M , LEE S G . Self-guided contrastive learning for BERT sentence representations[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:Long Papers). Stroudsburg:Association for Computational Linguistics, 2021: 2528-2540.
|
[25] |
YAN Y M , LI R M , WANG S R ,et al. ConSERT:a contrastive framework for self-supervised sentence representation transfer[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:Long Papers). Stroudsburg:Association for Computational Linguistics, 2021: 5065-5075.
|
[26] |
MENG Y , XIONG C , BAJAJ P ,et al. COCO-LM:correcting and contrasting text sequences for language model pretraining[J]. arXiv preprint, 2021,arXiv:2102.08473.
|
[27] |
WU Z , WANG S , GU J ,et al. CLEAR:contrastive learning for sentence representation[J]. arXiv preprint, 2020,arXiv:2012.15466.
|
[28] |
HADSELLR , CHOPRA S , LECUN Y . Dimensionality reduction by learning an invariant mapping[C]// Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06). Piscataway:IEEE Press, 2006: 1735-1742.
|
[29] |
EISENSTEIN J , O'CONNOR B , SMITH N A ,et al. A latent variable model for geographic lexical variation[C]// Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing,EMNLP 2010,9-11 October 2010,MIT Stata Center,Massachusetts,USA,A meeting of SIGDAT,a Special Interest Group of the ACL. Stroudsburg:Association for Computational Linguistics, 2010.
|
[30] |
CHAKRAVARTHI B R , GAMAN M , IONESCU R T ,et al. Findings of the VarDial evaluation campaign 2021[C]// Proceedings of the Eighth Workshop on NLP for Similar Languages,Varieties and Dialects,VarDial@EACL 2021,Kiyv,Ukraine, 2021: 1-11.
|
[31] |
SCHERRER Y , LJUBE?I? N . Social media variety geolocation with geobert[C]// Proceedings of the Eighth Workshop on NLP for Similar Lan-guages,Varieties and Dialects. Stroudsburg:Association for Computational Linguistics, 2021.
|
[32] |
RAHIMI A , BALDWIN T , COHN T . Continuous repre-sentation of location for geolocation and lexical dialectology using mixture density networks[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,EMNLP, 2017: 167-176.
|
[33] |
RAHIMI A , VU D , COHN T ,et al. Exploiting text and network context for geolocation of social media users[C]// Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg:Association for Computational Linguistics, 2015: 1362-1367.
|
[34] |
CHA M , GWON Y , KUNG H . Twitter geolocation and regional classification via sparse coding[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2021,9(1): 582-585.
|
[35] |
ROLLER S , SPERIOSU M , RALLAPALLI S ,et al. Supervised text-based geolocation using language models on an adaptive grid[J]. EMNLP-CoNLL2012- 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning,Proceedings of the Conference, 2012: 1500-1510.
|