Telecommunications Science ›› 2024, Vol. 40 ›› Issue (6): 173-194.doi: 10.11959/j.issn.1000-0801.2024151
Kunlin LIU, Xinji QU, Fang TAN, Honghui KANG, Shaowei ZHAO, Rong SHI
Received:
2024-03-28
Revised:
2024-05-18
Online:
2024-06-20
Published:
2024-07-11
CLC Number:
Kunlin LIU, Xinji QU, Fang TAN, Honghui KANG, Shaowei ZHAO, Rong SHI. Survey on large language models alignment research[J]. Telecommunications Science, 2024, 40(6): 173-194.
1 | OPENAI. Introducing ChatGPT[EB]. 2023. |
2 | BUBECK S, CHANDRASEKARAN V, ELDAN R, et al. Sparks of artificial general intelligence: early experiments with GPT-4[J]. arXiv Preprint, arXiv: , 2023. |
3 | OPENAI. GPT-4 technical report[J]. arXiv Preprint, arXiv:, 2023. |
4 | OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedback[J]. Advances in Neural Information Processing Systems, 2022(35): 27730-27744. |
5 | BACH S H, SANH V, YONG Z X, et al. Promptsource: an integrated development environment and repository for natural language prompts[J]. arXiv Preprint, arXiv: , 2022. |
6 | WEI J, BOSMA M, ZHAO V Y, et al. Finetuned language models are zero-shot learners[J]. arXiv Preprint, arXiv:, 2021. |
7 | LONGPRE S, HOU L, VU T, et al. The flan collection: designing data and methods for effective instruction tuning[J]. arXiv Preprint, arXiv:, 2023. |
8 | WANG Y Z, MISHRA S, ALIPOORMOLABASHI P, et al. Super-NaturalInstructions: generalization via declarative instructions on 1600+ NLP tasks[J]. arXiv Preprint, arXiv:, 2022. |
9 | MISHRA S, KHASHABI D, BARAL C, et al. Cross-task generalization via natural language crowdsourcing instructions[J]. arXiv Preprint, arXiv: , 2021. |
10 | ZHANG G, SHI Y M, LIU R B, et al. Chinese open instruction generalist: a preliminary release[J]. arXiv Preprint, arXiv:, 2023. |
11 | CONOVER M, HAYES M, MATHUR A, et al. Free dolly: introducing the world's first truly open instruction-tuned llm[EB]. 2023. |
12 | K?PF A, KILCHER Y, VON RüTTE D, et al. OpenAssistant conversations: democratizing large language model alignment[J]. arXiv Preprint, arXiv:, 2023. |
13 | CHIANG W L, LI Z, LIN Z, et al. Vicuna: an open-source chatbot impressing gpt-4 with 90%* chatgpt quality[EB]. 2023. |
14 | DING N, CHEN Y L, XU B K, et al. Enhancing chat language models by scaling high-quality instructional conversations[J]. arXiv Preprint, arXiv:, 2023. |
15 | XU C W, GUO D Y, DUAN N, et al. Baize: an open-source chat model with parameter-efficient tuning on self-chat data[J]. arXiv Preprint, arXiv:, 2023. |
16 | BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advances in Neural Information Processing Systems, 2020(33): 1877-1901. |
17 | JENTZSCH S, KERSTING K. ChatGPT is fun, but it is not funny! humor is still challenging large language models[J]. arXiv Preprint, arXiv: , 2023. |
18 | WANG Y, KORDI Y, MISHRA S, et al. Self-instruct: aligning language model with self generated instructions[J]. arXiv Preprint, arXiv:, 2022. |
19 | TAORI R, GULRAJANI I, ZHANG T, et al. Stanford alpaca: an instruction-following llama model[EB]. 2023. |
20 | CUI Y M, YANG Z Q, YAO X. Efficient and effective text encoding for Chinese LLaMA and alpaca[J]. arXiv Preprint, arXiv: , 2023. |
21 | WU M H, WAHEED A, ZHANG C Y, et al. LaMini-LM: a diverse herd of distilled models from large-scale instructions[J]. arXiv Preprint, arXiv: , 2023. |
22 | XU C, SUN Q F, ZHENG K, et al. WizardLM: empowering large language models to follow complex instruction[J]. arXiv Preprint, arXiv: , 2023. |
23 | ZHENG L M, CHIANG W L, SHENG Y, et al. Judging LLM-as-a-judge with MT-bench and chatbot arena[J]. arXiv Preprint, arXiv: , 2023. |
24 | DUBOIS Y, LI X C, TAORI R, et al. AlpacaFarm: a simulation framework for methods that learn from human feedback[J]. arXiv Preprint, arXiv: , 2023. |
25 | STIENNON N, OUYANG L, WU J, et al. Learning to summarize with human feedback[J]. Advances in Neural Information Processing Systems, 2020(33): 3008-3021. |
26 | NAKANO R, HILTON J, BALAJI S, et al. WebGPT: browser-assisted question-answering with human feedback[J]. arXiv Preprint, arXiv: , 2021. |
27 | BAI Y T, JONES A, NDOUSSE K, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback[J]. arXiv Preprint, arXiv: , 2022. |
28 | FAN A, JERNITE Y, PEREZ E, et al. ELI5: long form question answering[J]. arXiv Preprint, arXiv:, 2019. |
29 | GUO B Y, ZHANG X, WANG Z Y, et al. How close is ChatGPT to human experts? comparison corpus, evaluation, and detection[J]. arXiv Preprint, arXiv: , 2023. |
30 | LAMBERT N, TUNSTALL L, RAJANI N, et al. Huggingface h4 stack exchange preference dataset[EB]. 2023. |
31 | CUI G Q, YUAN L F, DING N, et al. UltraFeedback: boosting language models with high-quality feedback[J]. arXiv Preprint, arXiv: , 2023. |
32 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2009: 248-255. |
33 | SARZYNSKA-WAWER J, WAWER A, PAWLAK A, et al. Detecting formal thought disorder by deep contextualized word representations[J]. Psychiatry Research, 2021, 304: 114135. |
34 | RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI blog, 2019, 1(8): 9. |
35 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv Preprint, arXiv: , 2018. |
36 | SIMONS J. The creator of ChatGPT thinks AI should be regulated[EB]. 2023. |
37 | WEIDINGER L, UESATO J, RAUH M, et al. Taxonomy of risks posed by language models[C]//Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency. New York: ACM Press, 2022: 214-229. |
38 | TURNER A M, SMITH L, SHAH R, et al. Optimal policies tend to seek power[J]. arXiv Preprint, arXiv:, 2019. |
39 | PEREZ E, RINGER S, LUKO?IūT? K, et al. Discovering language model behaviors with model-written evaluations[J]. arXiv Preprint, arXiv: , 2022. |
40 | BOSTROM N. Existential risk prevention as global priority[J]. Global Policy, 2013, 4(1): 15-31. |
41 | BUCKNALL B S, DORI-HACOHEN S. Current and near-term AI as a potential existential risk factor[C]//Proceedings of the Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society. New York: ACM Press, 2022: 119-129. |
42 | ORD T. The precipice: existential risk and the future of humanity[M]. Hachette Books, 2020. |
43 | LEIKE J, KRUEGER D, EVERITT T, et al. Scalable agent alignment via reward modeling: a research direction[J]. arXiv Preprint, arXiv:, 2018. |
44 | SCHWARTZ S H, CIECIUCH J, VECCHIONE M, et al. Refining the theory of basic individual values[J]. Journal of Personality and Social Psychology, 2012, 103(4): 663-688. |
45 | KENTON Z, EVERITT T, WEIDINGER L, et al. Alignment of language agents[J]. arXiv Preprint, arXiv: , 2021. |
46 | ASKELL A, BAI Y T, CHEN A N, et al. A general language assistant as a laboratory for alignment[J]. arXiv Preprint, arXiv:, 2021. |
47 | SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv Preprint, arXiv:, 2017. |
48 | GLAESE A, MCALEESE N, TR?BACZ M, et al. Improving alignment of dialogue agents via targeted human judgements[J]. arXiv Preprint, arXiv: , 2022. |
49 | BAHETI A, LU X M, BRAHMAN F, et al. Leftover lunch: advantage-based offline reinforcement learning for language models[J]. arXiv Preprint, arXiv: , 2023. |
50 | GO D, KORBAK T, KRUSZEWSKI G, et al. Aligning language models with preferences through f-divergence minimization[J]. arXiv Preprint, arXiv: , 2023. |
51 | ZHU B, JIAO J, JORDAN M I. Principled reinforcement learning with human feedback from pairwise or $ K $-wise Comparisons[J]. arXiv Preprint, arXiv: , 2023. |
52 | ZIEBART B D, MAAS A L, BAGNELL J A, et al. Maximum entropy inverse reinforcement learning[C]//Aaai. 2008(8): 1433-1438. |
53 | HADFIELD-MENELL D, MILLI S, ABBEEL P, et al. Inverse reward design[J]. Advances in neural information processing systems, 2017, 30. |
54 | LI Z N, XU T, ZHANG Y S, et al. ReMax: a simple, effective, and efficient reinforcement learning method for aligning large language models[J]. arXiv Preprint, arXiv: , 2023. |
55 | WAN A, WALLACE E, SHEN S, et al. Poisoning language models during instruction tuning[J]. arXiv Preprint, arXiv:, 2023. |
56 | WEI J, WANG X Z, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[J]. Advances in Neural Information Processing Systems, 2022(35): 24824-24837. |
57 | LEE H, PHATALE S, MANSOOR H, et al. RLAIF: scaling reinforcement learning from human feedback with AI feedback[J]. arXiv Preprint, arXiv: , 2023. |
58 | ZHU B H, FRICK E, WU T H, et al. Starling-7B: improving LLM helpfulness & harmlessness with RLAIF[EB]. 2023. |
59 | LI X, ZHANG T, DUBOIS Y, et al. AlpacaEval: an automatic evaluator of instruction-following models[EB]. 2023. |
60 | SUN Z Q, SHEN Y K, ZHANG H X, et al. SALMON: self-alignment with instructable reward models[J]. arXiv Preprint, arXiv: , 2023. |
61 | LIU R B, JIA C Y, ZHANG G, et al. Second thoughts are best: learning to re-align with human values from text edits[J]. Advances in Neural Information Processing Systems, 2022, 35: 181-196. |
62 | KIM S, BAE S, SHIN J, et al. Aligning large language models through synthetic feedback[J]. arXiv Preprint, arXiv: , 2023. |
63 | LI Z K, PENG B L, HE P C, et al. Guiding large language models via directional stimulus prompting[J]. arXiv Preprint, arXiv:, 2023. |
64 | AKYüREK A F, AKYüREK E, MADAAN A, et al. RL4F: generating natural language feedback with reinforcement learning for repairing model outputs[J]. arXiv Preprint, arXiv:, 2023. |
65 | CASPER S, DAVIES X, SHI C, et al. Open problems and fundamental limitations of reinforcement learning from human feedback[J]. arXiv Preprint, arXiv: , 2023. |
66 | LIU H, SFERRAZZA C, ABBEEL P. Chain of hindsight aligns language models with feedback[J]. arXiv Preprint, arXiv:2302.02676, 2023, 3. |
67 | DONG H Z, XIONG W, GOYAL D, et al. RAFT: reward ranked finetuning for generative foundation model alignment[J]. arXiv Preprint, arXiv: , 2023. |
68 | RAFAILOV R, SHARMA A, MITCHELL E, et al. Direct preference optimization: your language model is secretly a reward model[J]. arXiv Preprint, arXiv: , 2023. |
69 | SONG F F, YU B W, LI M H, et al. Preference ranking optimization for human alignment[J]. arXiv Preprint, arXiv: , 2023. |
70 | ZIEGLER D M, STIENNON N, WU J, et al. Fine-tuning language models from human preferences[J]. arXiv Preprint, arXiv: , 2019. |
71 | ZHAO Y, KHALMAN M, JOSHI R, et al. Calibrating sequence likelihood improves conditional language generation[J]. arXiv Preprint, arXiv: , 2022. |
72 | LIU Y X, LIU P F, RADEV D, et al. BRIO: bringing order to abstractive summarization[J]. arXiv Preprint, arXiv: , 2022. |
73 | EDUNOV S, OTT M, AULI M, et al. Classical structured prediction losses for sequence to sequence learning[J]. arXiv Preprint, arXiv: , 2017. |
74 | ZHANG T Y, KISHORE V, WU F, et al. BERTScore: evaluating text generation with BERT[J]. arXiv Preprint, arXiv: , 2019. |
75 | YUAN Z, YUAN H Y, TAN C Q, et al. Rrhf: rank responses to align language models with human feedback without tears[J]. arXiv Preprint, arXiv: , 2023. |
76 | HONOVICH O, AHARONI R, HERZIG J, et al. TRUE: re-evaluating factual consistency evaluation[J]. arXiv Preprint, arXiv: , 2022. |
77 | PEZESHKPOUR P. Measuring and modifying factual knowledge in large language models[J]. arXiv Preprint, arXiv: , 2023. |
78 | WANG C X, CHENG S R, GUO Q P, et al. Evaluating open-QA evaluation[J]. arXiv Preprint, arXiv: , 2023. |
79 | ZHA Y H, YANG Y C, LI R C, et al. AlignScore: evaluating factual consistency with a unified alignment function[J]. arXiv Preprint, arXiv: , 2023. |
80 | RUDINGER R, NARADOWSKY J, LEONARD B, et al. Gender bias in coreference resolution[J]. arXiv Preprint, arXiv: , 2018. |
81 | ZHAO J, WANG T, YATSKAR M, et al. Gender bias in coreference resolution: Evaluation and debiasing methods[J]. arXiv Preprint, arXiv: , 2018. |
82 | LEVESQUE H J, DAVIS E, MORGENSTERN L. The Winograd schema challenge[C]//Proceedings of the Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning. New York: ACM Press, 2012: 552-561. |
83 | CAO Y T, DAUMé H III. Toward gender-inclusive coreference resolution: an analysis of gender and bias throughout the machine learning lifecycle[J]. Computational Linguistics, 2021, 47(3): 615-661. |
84 | STANOVSKY G, SMITH N A, ZETTLEMOYER L. Evaluating gender bias in machine translation[J]. arXiv Preprint, arXiv: , 2019. |
85 | ZHANG G, LI Y Z, WU Y Y, et al. CORGI-PM: a Chinese corpus for gender bias probing and mitigation[J]. arXiv Preprint, arXiv: , 2023. |
86 | DHAMALA J, SUN T, KUMAR V, et al. BOLD: dataset and metrics for measuring biases in open-ended language generation[C]//Proceedings of the Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. New York: ACM Press, 2021: 862-872. |
87 | SMITH E M, HALL M, KAMBADUR M, et al. "I'm sorry to hear that": finding new biases in language models with a holistic descriptor dataset[C]//Proceedings of the Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022: 9180-9211. |
88 | COSTA-JUSSà M R, ANDREWS P, SMITH E, et al. Multilingual holistic bias: extending descriptors and patterns to unveil demographic biases in languages at scale[J]. arXiv Preprint, arXiv: , 2023. |
89 | HUANG Y F, XIONG D Y. CBBQ: a Chinese bias benchmark dataset curated with human-AI collaboration for large language models[J]. arXiv Preprint, arXiv: , 2023. |
90 | HENDRYCKS D, BURNS C, BASART S, et al. Aligning AI with shared human values[J]. arXiv Preprint, arXiv: , 2020. |
91 | FORBES M, HWANG J D, SHWARTZ V, et al. Social chemistry 101: learning to reason about social and moral norms[J]. arXiv Preprint, arXiv: , 2020. |
92 | CHEN Y, ZHOU Y L, ZHU S C, et al. Detecting offensive language in social media to protect adolescent online safety[C]//Proceedings of the 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Conference on Social Computing. Piscataway: IEEE Press, 2012: 71-80. |
93 | RAZAVI A H, INKPEN D, URITSKY S, et al. Offensive language detection using multi-level classification[C]//FARZINDAR A, KE?ELJ V. Canadian Conference on Artificial Intelligence. Berlin, Heidelberg: Springer, 2010: 16-27. |
94 | WASEEM Z, HOVY D. Hateful symbols or hateful people? predictive features for hate speech detection on twitter[C]//Proceedings of the NAACL Student Research Workshop. Stroudsburg, PA, USA: Association for Computational Linguistics, 2016: 88-93. |
95 | ROSS B, RIST M, CARBONELL G, et al. Measuring the reliability of hate speech annotations: the case of the European refugee crisis[J]. arXiv Preprint, arXiv: , 2017. |
96 | WULCZYN E, THAIN N, DIXON L. Ex machina: personal attacks seen at scale[C]//Proceedings of the Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee, 2017: 1391-1399. |
97 | XU J, JU D, LI M, et al. Recipes for safety in open-domain chatbots[J]. arXiv Preprint, arXiv: , 2020. |
98 | GEHMAN S, GURURANGAN S, SAP M, et al. RealToxicityPrompts: evaluating neural toxic degeneration in language models[J]. arXiv Preprint, arXiv: , 2020. |
99 | RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[EB]. 2018. |
100 | DENG J W, ZHOU J Y, SUN H, et al. COLD: a benchmark for Chinese offensive language detection[J]. arXiv Preprint, arXiv: , 2022. |
101 | HENDRYCKS D, BURNS C, BASART S, et al. Measuring massive multitask language understanding[J]. arXiv Preprint, arXiv: , 2020. |
102 | LI H N, ZHANG Y X, KOTO F, et al. CMMLU: measuring massive multitask language understanding in Chinese[J]. arXiv Preprint, arXiv: , 2023. |
103 | HUANG Y Z, BAI Y Z, ZHU Z H, et al. C-eval: a multi-level multi-discipline Chinese evaluation suite for foundation models[J]. arXiv Preprint, arXiv: , 2023. |
104 | LIU C, JIN R R, REN Y Q, et al. M3KE: a massive multi-level multi-subject knowledge evaluation benchmark for Chinese large language models[J]. arXiv Preprint, arXiv: , 2023. |
105 | ZHONG W J, CUI R X, GUO Y D, et al. AGIEval: a human-centric benchmark for evaluating foundation models[J]. arXiv Preprint, arXiv: , 2023. |
106 | COBBE K, KOSARAJU V, BAVARIAN M, et al. Training verifiers to solve math word problems[J]. arXiv Preprint, arXiv: , 2021. |
107 | TALMOR A, HERZIG J, LOURIE N, et al. CommonsenseQA: a question answering challenge targeting commonsense knowledge[J]. arXiv Preprint, arXiv: , 2018. |
108 | GEVA M, KHASHABI D, SEGAL E, et al. Did aristotle use a laptop? a question answering benchmark with implicit reasoning strategies[J]. Transactions of the Association for Computational Linguistics, 2021(9): 346-361. |
109 | SUZGUN M, SCALES N, SCH?RLI N, et al. Challenging big-bench tasks and whether chain-of-thought can solve them[J]. arXiv Preprint, arXiv: , 2022. |
110 | CHEN M, TWOREK J, JUN H, et al. Evaluating large language models trained on code[J]. arXiv Preprint, arXiv: , 2021. |
111 | LIU J W, XIA C S, WANG Y Y, et al. Is your code generated by ChatGPT really correct? rigorous evaluation of large language models for code generation[J]. arXiv Preprint, arXiv: , 2023. |
112 | AUSTIN J, ODENA A, NYE M, et al. Program synthesis with large language models[J]. arXiv Preprint, arXiv: , 2021. |
113 | PAPINENI K, ROUKOS S, WARD T, et al. BLEU: a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics - ACL '02. Morristown, NJ, USA: Association for Computational Linguistics, 2001: 311-318. |
114 | XU F, SONG Y, IYYER M, et al. A critical evaluation of evaluations for long-form question answering[J]. arXiv Preprint, arXiv: , 2023. |
115 | FU J L, NG S K, JIANG Z B, et al. GPTScore: evaluate as you desire[J]. arXiv Preprint, arXiv: , 2023. |
116 | GAO M Q, RUAN J, SUN R L, et al. Human-like summarization evaluation with ChatGPT[J]. arXiv Preprint, arXiv: , 2023. |
117 | ZHUO T Y. Large language models are state-of-the-art evaluators of code generation[J]. arXiv Preprint, arXiv: , 2023. |
118 | BAI Y S, YING J H, CAO Y X, et al. Benchmarking foundation models with language-model-as-an-examiner[J]. arXiv Preprint, arXiv: , 2023. |
119 | LIN Y T, CHEN Y N. LLM-eval: unified multi-dimensional automatic evaluation for open-domain conversations with large language models[J]. arXiv Preprint, arXiv: , 2023. |
120 | WANG P Y, LI L, CHEN L, et al. Large language models are not fair evaluators[J]. arXiv Preprint, arXiv: , 2023. |
121 | WANG Y D, YU Z H, ZENG Z R, et al. PandaLM: an automatic evaluation benchmark for LLM instruction tuning optimization[J]. arXiv Preprint, arXiv: , 2023. |
122 | ZIEMS C, HELD W, SHAIKH O, et al. Can large language models transform computational social science?[J]. arXiv Preprint, arXiv: , 2023. |
123 | BANG Y J, CAHYAWIJAYA S, LEE N, et al. A multitask, multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity[J]. arXiv Preprint, arXiv: , 2023. |
[1] | Shouhua JIANG, Yiwu WANG. Research on task offloading algorithm of mobile edge computing based on deep reinforcement learning in SDCN [J]. Telecommunications Science, 2024, 40(2): 96-106. |
[2] | Xiaoxing LIAN, Yong SONG, Jun ZHU, Shuling WANG, Xiaozhou YE, Ye OUYANG. Research on dual process theory based telecom augmented cognition [J]. Telecommunications Science, 2024, 40(1): 123-135. |
[3] | Weiting ZHANG, Chenghui SUN, Hongchao WANG, Jianing DAI. Intelligent adaptation and integrated scheduling method for computing and networking resources [J]. Telecommunications Science, 2023, 39(9): 12-20. |
[4] | Linjiang SHEN, Chang CAO, Chao CUI, Yan ZHANG. Research on constrained policy reinforcement learning based multi-objective optimization of computing power network [J]. Telecommunications Science, 2023, 39(8): 136-148. |
[5] | Junpeng LIU, Weiwei XIA, Han LIU, Chenglin XIU, Feng YAN, Lianfeng SHEN. NR-U and Wi-Fi spectrum sharing for quality guaranteeing of power services [J]. Telecommunications Science, 2023, 39(7): 11-22. |
[6] | Xuerong WANG, Zhengzhi TANG, Yinchuan LI, Meiyu QI, Jianbo ZHU, Liang ZHANG. Delay-sensitive traffic intellisense scheduling based on optimal decision tree [J]. Telecommunications Science, 2023, 39(4): 120-132. |
[7] | Xiwen LIAO, Supeng LENG, Yujun MING, Tianyang LI. Digital twin based intelligent urban traffic forecasting and guidance strategy [J]. Telecommunications Science, 2023, 39(3): 70-79. |
[8] | Yu KANG, Yaqiong LIU, Tongyu ZHAO, Guochu SHOU. A survey on AI algorithms applied in communication and computation in Internet of vehicles [J]. Telecommunications Science, 2023, 39(1): 1-19. |
[9] | Xin LI, Jun SUN. Value-difference learning based mMTC devices access algorithm in multi-cell network [J]. Telecommunications Science, 2022, 38(6): 82-90. |
[10] | Nan JIN, Ruiqin WANG, Yuecong LU. Ebbinghaus forgetting curve and attention mechanism based recommendation algorithm [J]. Telecommunications Science, 2022, 38(10): 89-97. |
[11] | Jianwu ZHANG, Luxin WANG, Lingfen SUN, Qianye ZHANG, Hangguan SHAN. An survey on application of artificial intelligence in 5G system [J]. Telecommunications Science, 2021, 37(5): 14-31. |
[12] | Zhongli WU, Yuanyuan CAO, Wenrui HUANG, Bin DAI, Yijun MO. On-demand intelligent routing technology for deterministic network [J]. Telecommunications Science, 2021, 37(11): 11-16. |
[13] | Fei GUI,Yang CHENG,Dan LI,Sihong HONG. Internet intelligent routing architecture and algorithm [J]. Telecommunications Science, 2020, 36(10): 12-20. |
[14] | Mingjie HE,Jie ZHANG,Shiguang SHAN. A survey of neural architecture search [J]. Telecommunications Science, 2019, 35(5): 43-50. |
[15] | Chenwei Feng,Jiangnan Yuan. Heterogeneous Wireless Network Resource Management Algorithm Based on Reinforcement Learning [J]. Telecommunications Science, 2015, 31(8): 99-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|