1 |
SCHNEIDER P. TCP/IP traffic classification based on port numbers[J]. Division of Applied Sciences, Cambridge, MA, 1996, 2138(5): 1-6.
|
2 |
EL-MAGHRABY R T, ELAZIM N M ABD, BAHAA-ELDIN A M. A survey on deep packet inspection[C]//Proceedings of the 2017 12th International Conference on Computer Engineering and Systems (ICCES). Piscataway: IEEE Press, 2017: 188-197.
|
3 |
SUN G L, XUE Y B, DONG Y F, et al. An novel hybrid method for effectively classifying encrypted traffic[C]//Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM. Piscataway: IEEE Press, 2010: 1-5.
|
4 |
DING R S, LI W M. A hybrid method for service identification of SSL/TLS encrypted traffic[C]//Proceedings of the 2016 2nd IEEE International Conference on Computer and Communications (ICCC). Piscataway: IEEE Press, 2016: 250-253.
|
5 |
WANG W, ZHU M, ZENG X W, et al. Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of the 2017 International Conference on Information Networking (ICOIN). Piscataway: IEEE Press, 2017: 712-717.
|
6 |
FENG W B, HONG Z, WU L F, et al. Network protocol recognition based on convolutional neural network[J]. China Communications, 2020, 17(4): 125-139.
|
7 |
ABUROMMAN A A, IBNE REAZ M BIN. A novel weighted support vector machines multiclass classifier based on differential evolution for intrusion detection systems[J]. Information Sciences, 2017(414): 225-246.
|
8 |
SERPEN G, AGHAEI E. Host-based misuse intrusion detection using PCA feature extraction and kNN classification algorithms[J]. Intelligent Data Analysis, 2018, 22(5): 1101-1114.
|
9 |
LOPEZ-MARTIN M, CARRO B, SANCHEZ-ESGUEVILLAS A, et al. Network traffic classifier with convolutional and recurrent neural networks for Internet of things[J]. IEEE Access, 2017(5): 18042-18050.
|
10 |
ZOU Z, GE J G, ZHENG H B, et al. Encrypted traffic classification with a convolutional long short-term memory neural network[C]//Proceedings of the 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). Piscataway: IEEE Press, 2018: 329-334.
|
11 |
LI W H, ZHANG X Y, BAO H F, et al. ProGraph: robust network traffic identification with graph propagation[J]. IEEE/ACM Transactions on Networking, 2023, 31(3): 1385-1399.
|
12 |
ACETO G, CIUONZO D, MONTIERI A, et al. MIMETIC: Mobile encrypted traffic classification using multimodal deep learning[J]. Computer Networks, 2019(165): 106944.
|
13 |
SONG M Z, RAN J, LI S L. Encrypted traffic classification based on text convolution neural networks[C]//Proceedings of the 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT). Piscataway: IEEE Press, 2019: 432-436.
|
14 |
LU J, GOU G P, SU M J, et al. GAP-WF: graph attention pooling network for fine-grained SSL/TLS website fingerprinting[C]// Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2021: 1-8.
|
15 |
LIU C, HE L T, XIONG G, et al. FS-net: a flow sequence network for encrypted traffic classification[C]//Proceedings of the IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. Piscataway: IEEE Press, 2019: 1171-1179.
|
16 |
VAN EDE T, BORTOLAMEOTTI R, CONTINELLA A, et al. FlowPrint: semi-supervised mobile-app fingerprinting on encrypted network traffic[C]//Proceedings of the 2020 Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2020: 27.
|
17 |
HUOH T L, LUO Y, LI P L, et al. Flow-based encrypted network traffic classification with graph neural networks[J]. IEEE Transactions on Network and Service Management, 2023, 20(2): 1224-1237.
|
18 |
BRODY S, ALON U, YAHAV E. How attentive are graph attention networks? [Z]. 2021.
|
19 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS).Long Beach:Curran Associates Inc. 2017:6000-6010.
|
20 |
SU J L, AHMED M, LU Y, et al. RoFormer: enhanced transformer with rotary position embedding[J]. Neurocomputing, 2024(568): 127063.
|