1 |
王丰. 面向动态可持续的天地一体化融合通信关键技术研究[D]. 成都: 电子科技大学, 2022.
|
|
WANG F. Research on key technologies of dynamic and continuable space-terrestrial integrated communication[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
|
2 |
刁兆坤, 杨丽, 王振章. 6G空天地一体化网络架构及其构建[J]. 通信世界, 2024(4): 36-39.
|
|
DIAO Z K, YANG L, WANG Z Z. 6G integrated network architecture of space, space and earth and its construction[J]. Communications World, 2024(4): 36-39.
|
3 |
赵亚飞, 闫冰, 孙耀华, 等. 低轨星座通导一体化:现状、机遇和挑战[J]. 电信科学, 2023, 39(5): 90-100.
|
|
ZHAO Y F, YAN B, SUN Y H, et al. Communication and navigation integration for LEO constellations: status, opportunities, and challenges[J]. Telecommunications Science, 2023, 39(5): 90-100.
|
4 |
贵重, 李艳, 李云翔, 等. 卫星通信发展趋势与展望[J]. 电信工程技术与标准化, 2023, 36(11): 82-85.
|
|
GUI Z, LI Y, LI Y X, et al. Development trend and prospect of satellite communications[J]. Telecom Engineering Technics and Standardization, 2023, 36(11): 82-85.
|
5 |
康绍莉, 缪德山, 索士强, 等. 面向6G的空天地一体化系统设计和关键技术[J]. 信息通信技术与政策, 2022(9): 18-26.
|
|
KANG S L, MIAO D S, SUO S Q, et al. System design and key technologies for the integrated air-space-terrestrial communication toward 6G[J]. Information and Communications Technology and Policy, 2022(9): 18-26.
|
6 |
刘家祥, 彭硕, 蒋峥, 等. 空天地一体化网络运营方法分析与挑战[J]. 移动通信, 2022, 46(9): 45-50.
|
|
LIU J X, PENG S, JIANG Z, et al. Analysis and challenge of operation method for space-air-ground integrated network[J]. Mobile Communications, 2022, 46(9): 45-50.
|
7 |
崔新雨, 伍杰, 周一青, 等. 空天地一体化融合组网的挑战与关键技术[J]. 西安电子科技大学学报, 2023, 50(1): 1-11.
|
|
CUI X Y, WU J, ZHOU Y Q, et al. Challenges of and key technologies for the air-space-ground integrated network[J]. Journal of Xidian University, 2023, 50(1): 1-11.
|
8 |
BARTON R J. Distributed MIMO communication using small satellite constellations[C]//Proceedings of the 2014 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE). Piscataway: IEEE Press, 2014: 1-7.
|
9 |
SHI F R, TUO X G, YANG S X, et al. Rapid-flooding time synchronization for large-scale wireless sensor networks[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 1581-1590.
|
10 |
ELSON J, GIROD L, ESTRIN D. Fine-grained network time synchronization using reference broadcasts[J]. ACM SIGOPS Operating Systems Review, 2002, 36: 147-163.
|
11 |
PING S. Delay measurement time synchronization for wireless sensor networks[J]. Intel Research Berkeley Lab, 2003(6): 1-10.
|
12 |
GANERIWAL S, KUMAR R, SRIVASTAVA M B. Timing-sync protocol for sensor networks[C]//Proceedings of the 1st International Conference On Embedded Networked Sensor Systems. New York: ACM Press, 2003: 138-149.
|
13 |
KIRCHNER D. Two-way time transfer via communication satellites[J]. Proceedings of the IEEE, 1991, 79(7): 983-990.
|
14 |
TRAINOTTI C, DASSIé M, GIORGI G, et al. Autonomous satellite system synchronization schemes via optical two-way time transfer and distributed composite clock[C]//Proceedings of the 35th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2022). 2022: 3646-3661.
|
15 |
ZHANG S K, ZHANG L, YANG Y J. Ultra-short term clock offset prediction for two-way satellite time synchronization[C]//Proceedings of the 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC). Piscataway: IEEE Press, 2013: 335-338.
|
16 |
QU Z, CHEN J Y, WU N J. Consensus clock synchronization for distributed satellite system based on distributed PI controller[C]// Proceedings of the 2021 IEEE 15th International Conference on Electronic Measurement & Instruments (ICEMI). Piscataway: IEEE Press, 2021: 114-119.
|
17 |
XU J L, ZHANG C J, WANG C H, et al. Approach to inter-satellite time synchronization for micro-satellite cluster[J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 805-815.
|
18 |
SCHENATO L, FIORENTIN F. Average TimeSynch: a consensus-based protocol for clock synchronization in wireless sensor networks[J]. Automatica, 2011, 47(9): 1878-1886.
|
19 |
TIAN Y P, ZONG S H, CAO Q Q. Structural modeling and convergence analysis of consensus-based time synchronization algorithms over networks: Non-topological conditions[J]. Automatica, 2016, 65: 64-75.
|
20 |
HE J P, CHENG P, SHI L, et al. Time synchronization in WSNs: a maximum-value-based consensus approach[J]. IEEE Transactions on Automatic Control, 2014, 59(3): 660-675.
|