Telecommunications Science ›› 2024, Vol. 40 ›› Issue (6): 25-37.doi: 10.11959/j.issn.1000-0801.2024172
Previous Articles Next Articles
Kexin FAN, Lirong AN, Qinyu ZHANG
Received:
2024-04-30
Revised:
2024-06-15
Online:
2024-06-20
Published:
2024-07-11
Supported by:
CLC Number:
Kexin FAN, Lirong AN, Qinyu ZHANG. Research on service-driven network technologies for space-air-ground-sea integration[J]. Telecommunications Science, 2024, 40(6): 25-37.
"
国家和地区 | 名称 | 核心技术 | 优势 | 问题 |
---|---|---|---|---|
美国 | TCA | IP技术,激光通信 | 全球覆盖,高度集成 | 系统复杂度高,部署成本高 |
Starlink | 相控阵天线,激光通信 | 全球覆盖,高速互联网 | 太空碎片风险,频谱干扰 | |
Loon | LTE无线通信 | 快速部署,低成本网络 | 受天气影响,覆盖范围有限 | |
Aquila | 激光通信 | 节能环保,覆盖较广 | 长航时飞行技术不成熟 | |
日本 | STICS | 高线性放大器,多波束技术 | 服务范围广,高速率 | 频谱资源有限,系统可靠性低 |
欧洲 | ISICOM | IP路由,多波束天线 | 高频谱利用率,高速率 | 集成复杂,安全风险高 |
VITAL | 虚拟化网络功能,软件定义网络 | 高灵活性和扩展性 | 技术复杂,标准化要求高 | |
SATis5 | 5G NR,边缘计算 | 高速率,响应快 | 资源协调复杂,成本高 | |
英国 | OneWeb | 渐进倾斜技术,开放式架构 | 全球覆盖,高速低时延 | 发射和运营成本高,频谱干扰 |
中国 | 鸿雁 | 在轨可重构技术 | 全球覆盖,实时双向通信 | 频谱和轨位资源有限 |
虹云 | 毫米波相控阵技术 | 全球覆盖,高速接入 | 业务系统尚需优化论证 | |
天启 | 通信载荷自检技术,高速下载技术 | 低成本,服务范围广 | 终端设备成本高,频谱资源有限 | |
彩虹无人机 | 宽带接入技术,多模通信技术 | 安全可靠,部署快速灵活 | 通信距离有限,资源管理复杂 | |
飞云 | 空基局域网技术 | 覆盖范围广,续航时间长 | 受气象条件和飞行环境影响 | |
快云 | 宽带通信技术,抗干扰技术 | 快速部署,连续性服务 | 配套系统成本高,环境复杂 |
"
对比项 | 网络切片 | 移动边缘计算 | 通感算一体化 |
---|---|---|---|
定义 | 将物理网络按需划分为多个切片实例 | 将计算、存储资源部署至网络边缘 | 深度融合通信、感知、计算功能 |
特点 | 网络资源隔离,按需灵活配置 | 近场数据处理,实时分析决策 | 多功能融合,环境业务感知 |
优势 | 提供定制化服务,提升网络资源利用率,提高服务质量 | 提升用户体验,降低网络负载,支持高实时性业务 | 保障高质量、连续性服务,提升网络整体性能 |
针对挑战 | 异构网络差异大,环境复杂多变 | 传输环境复杂,资源有限不均衡 | 通信环境不确定,资源稀疏高动态 |
技术依赖 | SDN、NFV、SFC、AI | 在轨计算、空基计算、AI | 通感、通算、感算双边融合,AI |
技术难点 | 资源编排复杂,业务需求高动态 | 业务逻辑复杂,数据规模大 | 技术整合难度高,性能指标独立 |
1 | 沈学民, 承楠, 周海波, 等. 空天地一体化网络技术:探索与展望[J]. 物联网学报, 2020, 4(3): 3-19. |
SHEN X M, CHENG N, ZHOU H B, et al. Space-air-ground integrated networks: review and prospect[J]. Chinese Journal on Internet of Things, 2020, 4(3): 3-19. | |
2 | 崔新雨, 伍杰, 周一青, 等. 空天地一体化融合组网的挑战与关键技术[J]. 西安电子科技大学学报, 2023, 50(1):1-11. |
CUI X Y, WU J, ZHOU Y Q, et al. Challenges and key technologies for the air-space-ground integrated network[J]. Journal of Xidian University, 2023, 50(1):1-11. | |
3 | ITU. ITU-T technical report - representative use cases and key network requirements for network 2030[R]. 2020. |
4 | CCSDS. Blue books: recommended standards[EB]. 2019. |
5 | 汪春霆, 翟立君, 徐晓帆. 天地一体化信息网络发展与展望[J]. 无线电通信技术, 2020, 46(5): 493-504. |
WANG C T, ZHAI L J, XU X F. Development and prospects of space-terrestrial integrated information network[J]. Radio Communications Technology, 2020, 46(5): 493-504. | |
6 | 丁雪丽. 美国转型通信体系结构(TCA)的发展[J]. 计算机与网络, 2005, (9): 49-51. |
DING X L. The development of USA transformational communications architecture (TCA)[J]. China Computer & Network, 2005, (9): 49-51. | |
7 | FUJINO Y, MIURA A, HAMAMOTO N, et al. Satellite terrestrial integrated mobile communication system as a disaster countermeasure[C]//Proceedings of 2011 URSI General Assembly and Scientific Symposium. Piscataway: IEEE Press, 2011: 1-4. |
8 | 吴建军, 程宇新, 梁庆林, 等.面向未来全球化网络的欧洲ISICOM 卫星通信概念系统[J]. 卫星应用, 2010 (5): 59-64. |
WU J J, CHENG Y X, LIANG Q L, et al. European ISICOM satellite communication concept system for future global networks[J]. Satellite Application, 2010 (5): 59-64. | |
9 | Union European. Virtualized hybrid satellite-terrestrial systems for resilient and flexible future networks[EB]. 2017. |
10 | SATis 5 Consortium. SATis5[EB]. 2018. |
11 | LIU J J, SHI Y P, FADLULLAH Z M, et al. Space-air-ground integrated network: a survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2714-2741. |
12 | CAO X B, YANG P, ALZENAD M, et al. Airborne communication networks: a survey[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 1907-1926. |
13 | GUO H Z, LI J Y, LIU J J, et al. A survey on space-air-ground-sea integrated network security in 6G[J]. IEEE Communications Surveys & Tutorials, 2021, 24(1): 53-87. |
14 | LIU J, DU X Q, CUI J H, et al. Task-oriented intelligent networking architecture for the space-air-ground-aqua integrated network[J]. IEEE Internet of Things Journal, 2020, 7(6): 5345-5358. |
15 | SHANG B D, YI Y, LIU L J. Computing over space-air-ground integrated networks: challenges and opportunities[J]. IEEE Network, 2021, 35(4): 302-309. |
16 | DAUREMBEKOVA A, SCHOTTEN H D. Opportunities and limitations of space-air-ground integrated network in 6G systems[C]//Proceedings of 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Piscataway: IEEE Press, 2023: 1-7. |
17 | 管莹莹, 宋静, 宋清洋, 等. 空天地海一体化网络切片研究综述[J]. 移动通信, 2022, 46(10):20-25. |
GUAN Y Y, SONG J, SONG Q Y, et al. Space-air-ground-sea integrated network slicing: a survey[J]. Mobile Communications, 2022, 46(10):20-25. | |
18 | YOU X, WANG C X, HUANG J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64: 1-74. |
19 | AHMED T, ALLEG A, FERRUS R, et al. On-demand network slicing using SDN/NFV-enabled satellite ground segment systems[C]//Proceedings of 2018 4th IEEE conference on network softwarization and workshops (NetSoft). Piscataway: IEEE Press, 2018: 242-246. |
20 | ZHANG N, ZHANG S, YANG P, et al. Software defined space-air-ground integrated vehicular networks: challenges and solutions[J]. IEEE Communications Magazine, 2017, 55(7): 101-109. |
21 | KAK A, AKYILDIZ I F. Towards automatic network slicing for the internet of space things[J]. IEEE Transactions on Network and Service Management, 2022, 19(1): 392-412. |
22 | CAO H T, SHEN S G, GUO Y A, et al. Resource allocation and orchestration of slicing services in softwarized space-aerial-ground integrated networks[C]//Proceedings of 2023 International Wireless Communications and Mobile Computing (IWCMC). Piscataway: IEEE Press, 2023: 769-774. |
23 | ZHANG S, QUAN W, LI J L, et al. Air-ground integrated vehicular network slicing with content pushing and caching[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 2114-2127. |
24 | LYU F, YANG P, WU H Q, et al. Service-oriented dynamic resource slicing and optimization for space-air-ground integrated vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 7469-7483. |
25 | FENG B H, LI G L, LI G W, et al. Efficient mappings of service function chains at terrestrial-satellite hybrid cloud networks[C]//Proceedings of 2018 IEEE Global Communications Conference. Piscataway: IEEE Press, 2018: 1-6. |
26 | WANG G C, ZHOU S, ZHANG S, et al. SFC-based service provisioning for reconfigurable space-air-ground integrated networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(7): 1478-1489. |
27 | ZHANG P Y, YANG P, KUMAR N, et al. Space-air-ground integrated network resource allocation based on service function chain[J]. IEEE Transactions on Vehicular Technology, 2022, 71(7): 7730-7738. |
28 | LIU R Q, LI R Y N, DIRENZO M, et al. A vision and an evolutionary framework for 6G: scenarios, capabilities and enablers[J]. arXiv preprint arXiv:, 2023. |
29 | WU W, ZHOU C H, LI M S, et al. AI-native network slicing for 6G networks[J]. IEEE Wireless Communications, 2022, 29(1): 96-103. |
30 | RODRIGUES T K, KATO N. Network slicing with centralized and distributed reinforcement learning for combined satellite/ground networks in a 6G environment[J]. IEEE Wireless Communications, 2022, 29(1): 104-110. |
31 | HU Y S, SHI N X, LU L, et al. Space-air-ground integrated heterogeneous network slicing with native intelligence[C]//Proceedings of 2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops). Piscataway: IEEE Press, 2023: 1-6. |
32 | SEID A M, ABISHU H N, ERBAD A, et al. Hierarchical DRL-empowered network slicing in space-air-ground networks[C]//Proceedings of 2023 IEEE Global Communications Conference. Piscataway: IEEE Press, 2023: 4680-4685. |
33 | ZHOU G R, ZHAO L Q, ZHENG G, et al. Multi-objective optimization of space-air-ground integrated network slicing relying on a pair of central and distributed learning algorithms[J]. IEEE Internet of Things Journal, 2023, 11(5): 8327-8344. |
34 | HU Y C, PATEL M, SABELLA D, et al. Mobile edge computing—a key technology towards 5G[J]. ETSI White Paper, 2015, 11(11): 1-16. |
35 | 雷波, 刘增义, 王旭亮, 等. 基于云、网、边融合的边缘计算新方案: 算力网络[J]. 电信科学, 2019, 35(9): 44-51. |
LEI B, LIU Z Y, WANG X L, et al. Computing network: a new multi-access edge computing[J]. Telecommunications Science, 2019, 35(9): 44-51. | |
36 | YU S, GONG X W, SHI Q, et al. EC-SAGINs: edge-computing-enhanced space-air-ground-integrated networks for internet of vehicles[J]. IEEE Internet of Things Journal, 2021, 9(8): 5742-5754. |
37 | ZHANG Z J, ZHANG W Y, TSENG F H. Satellite mobile edge computing: improving QoS of high-speed satellite-terrestrial networks using edge computing techniques[J]. IEEE Network, 2019, 33(1): 70-76. |
38 | ZHOU F, WU Y, HU R Q, et al. Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 1927-1941. |
39 | CHENG N, XU W C, SHI W S, et al. Air-ground integrated mobile edge networks: architecture, challenges, and opportunities[J]. IEEE Communications Magazine, 2018, 56(8): 26-32. |
40 | CHEN W H, LIU B C, HUANG H W, et al. When UAV swarm meets edge-cloud computing: the QoS perspective[J]. IEEE Network, 2019, 33(2): 36-43. |
41 | XIE R C, TANG Q Q, WANG Q N. Satellite terrestrial integrated edge computing networks: architecture, challenges, and open issues[J]. IEEE Network, 2020, 34(3): 224-231. |
42 | 吴健, 贾敏, 郭庆. 基于移动边缘计算的空天地一体化网络架构[J]. 天地一体化信息网络, 2024, 5(1): 24-31. |
WU J, JIA M, GUO Q. Space-air-ground integrated network architecture based on mobile edge computing[J]. Space-Integrated- Ground Information Networks, 2024, 5(1): 24-31. | |
43 | GUO Y K, GU S S, ZHANG Q Y, et al. A coded distributed computing framework for task offloading from multi-UAV to edge servers[C]//Proceedings of 2021 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway: IEEE Press, 2021: 1-6. |
44 | CHEN Y L, AI B, NIU Y, et al. Energy-constrained computation offloading in space-air-ground integrated networks using distributionally robust optimization[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11): 12113-12125. |
45 | LIU J Y, ZHAO X W, QIN P, et al. Joint dynamic task offloading and resource scheduling for WPT enabled space-air-ground power internet of things[J]. IEEE Transactions on Network Science and Engineering, 2021, 9(2): 660-677. |
46 | QIN P, FU Y, ZHAO X W, et al. Optimal task offloading and resource allocation for C-NOMA heterogeneous air-ground integrated power internet of things networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9276-9292. |
47 | LI H R, WU S H, JIAO J, et al. Energy-efficient task offloading of edge-aided maritime UAV systems[J]. IEEE Transactions on Vehicular Technology, 2022, 72(1): 1116-1126. |
48 | ZHOU C H, WU W, HE H L, et al. Deep reinforcement learning for delay-oriented IoT task scheduling in SAGIN[J]. IEEE Transactions on Wireless Communications, 2020, 20(2): 911-925. |
49 | WANG Z, ZHOU Z Y, ZHANG H, et al. AI-based cloud-edge-device collaboration in 6G space-air-ground integrated power IoT[J]. IEEE Wireless Communications, 2022, 29(1): 16-23. |
50 | ZHAO N, YE Z Y, PEI Y Y, et al. Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6949-6960. |
51 | LYU Y F, LIU Z, FAN R F, et al. Optimal computation offloading in collaborative LEO-IoT enabled MEC: a multi-agent deep reinforcement learning approach[J]. IEEE Transactions on Green Communications and Networking, 2022, 7(2): 996-1011. |
52 | 中国通信学会. 通感算一体化网络前沿报告[R]. 2023. |
China Institute of Communications. Frontier report for integrated communication, sensing and computing[R]. 2023. | |
53 | 吴晓文, 焦侦丰, 刘冰, 等. 面向6G的卫星通感一体化[J]. 移动通信, 2022, 46(10): 2-11. |
WU X W, JIAO Z F, LIU B, et al. Satellite integrated sensing and communication for 6G[J]. Mobile Communications, 2022, 46(10): 2-11. | |
54 | WANG M, CHEN P, CAO Z X, et al. Reinforcement learning-based UAVs resource allocation for integrated sensing and communication (ISAC) system[J]. Electronics, 2022, 11(3): 441. |
55 | YOU L, QIANG X Y, TSINOS C G, et al. Beam squint-aware integrated sensing and communications for hybrid massive MIMO LEO satellite systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(10): 2994-3009. |
56 | WANG Y J, WANG M Z, MENG L K, et al. New crowd sensing computing in space-air-ground integrated networks[C]//Proceedings of 2021 International Conference on Space-Air-Ground Computing (SAGC). Piscataway: IEEE Press, 2021: 143-149. |
57 | 闫实, 彭木根, 王文博. 通信-感知-计算融合: 6G愿景与关键技术[J]. 北京邮电大学学报, 2021, 44(4):1-11. |
YAN S, PENG M G, WANG W B. Integration of communication, sensing and computing: the vision and key technologies of 6G[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4):1-11. | |
58 | 景毅, 姜春晓, 詹亚锋. 面向卫星通信的 6G 通感算融合架构、技术与挑战[J]. 无线电通信技术, 2023, 49(1): 12-20. |
JING Y, JIANG C X, ZHAN Y F. 6G communication, sensing and computing integration for satellite communication: architectures, technologies and challenges[J]. Radio Communications Technology, 2023, 49(1): 12-20. | |
59 | 廖佳佳, 向路平, 胡杰, 等. 基于无人机的6G通感算研究概述[J]. 移动通信, 2023, 47(3): 92-100. |
LIAO J J, XIANG L P, HU J, et al. An overview of UAV-based communication-sensing-computing in 6G communication networks[J]. Mobile Communications, 2023, 47(3): 92-100. | |
60 | 姜大洁, 袁雁南, 周通, 等. 面向6G的通感算融合服务、系统架构与关键技术[J]. 移动通信, 2023, 47(3): 2-13. |
JIANG D J, YUAN Y N, ZHOU T, et al. Services, system architecture and key technologies for 6G integrated communication, sensing and computing[J]. Mobile Communications, 2023, 47(3): 2-13. |
[1] | Liang GUO, Shaopeng WANG, Wei QUAN, Jie LI. Research on the development of intelligent computing network for large models [J]. Telecommunications Science, 2024, 40(6): 137-145. |
[2] | Gengxin ZHANG, Leiyao LIAO, Yuanzhi HE. Study on the key technologies of satellite communication for space-air-ground-sea integration [J]. Telecommunications Science, 2024, 40(6): 11-24. |
[3] | Jinhui LI, Chengbin HUANG, Jinhua WANG, Yang LIU. Challenges and innovative solutions of space-ground integrated network security [J]. Telecommunications Science, 2024, 40(6): 79-88. |
[4] | Ye WANG, Yifei WANG, Kang CHEN, Xiaorong ZHU, En TONG, Yufei XU. Joint optimization algorithm for 6G network task offloading and fine-grained slice resource scheduling [J]. Telecommunications Science, 2024, 40(5): 86-99. |
[5] | Lei ZHANG, Yuhan JING, Bo HE, Qi QI, Chen CHEN, Jingyu WANG. A method of building alarm causality graph for anomaly events in network services [J]. Telecommunications Science, 2024, 40(5): 152-164. |
[6] | Tongxu ZHANG, Li YU. Development trends of information and communication technology [J]. Telecommunications Science, 2024, 40(4): 151-159. |
[7] | Mugen PENG, Shuo YUAN. Toward satellite-terrestrial integration: 6G cloud-fog collaborative self-organizing network [J]. Telecommunications Science, 2024, 40(3): 1-14. |
[8] | Shanzhi CHEN, Zhiwen FAN, Jiade JIN, Yun CAO. Analysis and suggestions on inter-satellite laser communication of satellite Internet [J]. Telecommunications Science, 2024, 40(2): 1-10. |
[9] | Ruirui SUN, Yu HAN, Shi JIN, Jue WANG. Research on low-complexity XL-MIMO wireless transmission design [J]. Telecommunications Science, 2023, 39(9): 87-96. |
[10] | Yan WANG, Ying PENG. Research on 6G standardization of International Telecommunications Union(ITU) [J]. Telecommunications Science, 2023, 39(6): 129-138. |
[11] | Zehua GUO, Haowen ZHU, Tongwen XU. Network modal innovation for distributed machine learning [J]. Telecommunications Science, 2023, 39(6): 44-51. |
[12] | Wenjia XU, Yixu WANG, Mugen PENG. Satellite remote sensing and the integration of 6G communication and remote sensing [J]. Telecommunications Science, 2023, 39(4): 60-70. |
[13] | Ruihong JIANG, Yizhe FENG, Yaohua SUN, Haina ZHENG. A survey on networking key technologies for LEO satellite network [J]. Telecommunications Science, 2023, 39(2): 37-47. |
[14] | Shanjin NI, Liang SHEN, Shan NING, Xin WAN. Key technologies in physical layer of 6G wireless communications [J]. Telecommunications Science, 2023, 39(12): 1-18. |
[15] | Guoyu PENG, Shuo WANG, Guizhen LI, Yuhan WEN, Tao HUANG. Research on space-air-ground integrated deterministic networking [J]. Telecommunications Science, 2023, 39(11): 13-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|