[1] | 张洋, 毛忠阳, 刘锡国 ,等. 海上超短波超视距对流层散射信道模型研究[J]. 电波科学学报, 2022,37(2): 238-243. | | ZHANG Y , MAO Z Y , LIU X G ,et al. Study on tropospheric scattering channel model of ultra short wave over the horizon at sea[J]. Chinese Journal of Radio Science, 2022,37(2): 238-243. | [2] | 孔凌劲, 刘月玲, 张校晨 ,等. 超短波频段复杂城区场景的信道测量与建模[J]. 电波科学学报, 2020,35(4): 542-550. | | KONG L J , LIU Y L , ZHANG X C ,et al. Channel measurement and modeling for VHF bands in typical urban scenarios[J]. Chinese Journal of Radio Science, 2020,35(4): 542-550. | [3] | 陈柯威, 刘宏波, 马俊凯 . 超短波信道模型的仿真与分析[J]. 舰船电子工程, 2022,42(2): 87-90,129. | | CHEN K W , LIU H B , MA J K . Simulation and analysis of ultrashort wave channel model[J]. Ship Electronic Engineering, 2022,42(2): 87-90,129. | [4] | 张玉波, 李志达, 沈延峰 . 虚拟短波/超短波通信系统的关键技术研究[J]. 中国新通信, 2016,18(7): 92. | | ZHANG Y B , LI Z D , SHEN Y F . Research on key technologies of virtual shortwave/ultrashort wave communication system[J]. China New Telecommunications, 2016,18(7): 92. | [5] | 黄超 . 无线射频信号的能量检测与特征识别[D]. 北京:北京邮电大学, 2016. | | HUANG C . Energy detection and feature recognition of radio frequency signals[D]. Beijing:Beijing University of Posts and Telecommunications, 2016. | [6] | SMRITI , CHHAGAN C . Double threshold-based energy detection spectrum sensing scheme by considering the sensing history in confusion region[C]// Proceedings of 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN). Piscataway:IEEE Press, 2018: 518-521. | [7] | WANG W Y , WANG J M , LI C Q . A signal detection method based on hybrid energy detection[C]// Proceedings of 2022 4th International Conference on Intelligent Control,Measurement and Signal Processing (ICMSP). Piscataway:IEEE Press, 2022: 695-700. | [8] | LI P J , HOU D Y , ZHAO J ,et al. Research on adaptive energy detection technology based on correlation window[C]// Proceedings of 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC). Piscataway:IEEE Press, 2021: 836-840. | [9] | 姚朋 . 基于频谱特征的深度学习信号检测方法研究[D]. 武汉:华中科技大学, 2019. | | YAO P . Research on deep learning signal detection method based on spectral features[D]. Wuhan:Huazhong University of Science and Technology, 2019. | [10] | KUMAR Y , SHEORAN M , JAJOO G ,et al. Automatic modulation classification based on constellation density using deep learning[J]. IEEE Communications Letters, 2020,24(6): 1275-1278. | [11] | BHATTI F A , KHAN M J , SELIM A ,et al. Shared spectrum monitoring using deep learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2021,7(4): 1171-1185. | [12] | 邵延华, 张铎, 楚红雨 ,等. 基于深度学习的 YOLO 目标检测综述[J]. 电子与信息学报, 2022,44(10): 3697-3708. | | SHAO Y H , ZHANG D , CHU H Y ,et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022,44(10): 3697-3708. | [13] | 周宇航, 侯进, 李嘉新 ,等. 基于频域叠加和深度学习的频谱信号识别[J]. 计算机应用研究, 2023,40(3): 874-879. | | ZHOU Y H , HOU J , LI J X ,et al. Spectrum signal identification based on frequency-domain superposition and deep learning[J]. Application Research of Computers, 2023,40(3): 874-879. | [14] | 郑金志, 汲如意, 张立波 ,等. 基于 Transformer 解码的端到端场景文本检测与识别算法[J]. 通信学报, 2023,44(5): 64-78. | | ZHENG J Z , JI R Y , ZHANG L B ,et al. End-to-end scene text detection and recognition algorithm based on Transformer decoders[J]. Journal on Communications, 2023,44(5): 64-78. | [15] | 霍纬纲, 梁锐, 李永华 . 基于随机Transformer的多维时间序列异常检测模型[J]. 通信学报, 2023,44(2): 94-103. | | HUO W G , LIANG R , LI Y H . Anomaly detection model for multivariate time series based on stochastic Transformer[J]. Journal on Communications, 2023,44(2): 94-103. | [16] | 李宝奇 . 深度卷积神经网络及其在地面图像目标识别中的应用[D]. 西安:西北工业大学, 2019. | | LI B Q . Depth convolution neural network and its application in ground image target recognition[D]. Xi’an:Northwestern Polytechnical University, 2019. | [17] | HE K M , ZHANG X Y , REN S Q ,et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016: 770-778. | [18] | HU J , SHEN L , SUN G . Squeeze-and-excitation networks[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 7132-7141. | [19] | 徐文贵 . 基于融合全局与局部特征网络的指静脉识别算法及其轻量化研究[D]. 杭州:杭州电子科技大学, 2022. | | XU W G . Finger vein identification algorithm based on global and local feature networks and its lightweight research[D]. Hangzhou:Hangzhou Dianzi University, 2022. |
|