通信学报 ›› 2019, Vol. 40 ›› Issue (3): 170-181.doi: 10.11959/j.issn.1000-436x.2019068
王田1,2,沈雪微1,罗皓1,陈柏生1,王国军3,贾维嘉2,4
修回日期:
2019-01-21
出版日期:
2019-03-01
发布日期:
2019-04-04
作者简介:
王田(1982- ),男,湖南汨罗人,博士,华侨大学教授,主要研究方向为物联网及其安全问题、云计算技术、社交网络、软件安全、大数据处理等。|沈雪微(1994- ),女,河南新乡人,华侨大学硕士生,主要研究方向为雾计算、传感云、物联网及其安全问题等。|罗皓(1994- ),男,广东惠州人,华侨大学硕士生,主要研究方向为雾计算、传感云、物联网及其安全问题等。|陈柏生(1980- ),男,湖南蓝山人,华侨大学讲师,主要研究方向为云计算技术。|陈柏生(1980- ),男,湖南蓝山人,华侨大学讲师,主要研究方向为云计算技术。|贾维嘉(1957- ),男,中国香港人,博士,上海交通大学教授、博士生导师,主要研究方向为下一代无线通信、协议、异构网络等。
基金资助:
Tian WANG1,2,Xuewei SHEN1,Hao LUO1,Baisheng CHEN1,Guojun WANG3,Weijia JIA2,4
Revised:
2019-01-21
Online:
2019-03-01
Published:
2019-04-04
Supported by:
摘要:
云计算技术与无线传感器网络结合所产生的传感云(sensor-cloud)系统已经逐渐成为研究的热点。传感云在云计算平台的支撑下扩展了传统传感网的服务能力。对目前主流传感云系统进行了充分调研,总结了传感云系统的特点和发展规律,发现系统中存在的可信问题将直接影响到上层数据保护和应用;揭示了已有方案难以提供可信传感云服务是因为底层无线传感网能量不足、计算能力弱、易故障等,以及云计算模式缺乏对底层传感器节点和数据的直接管理等;构建了基于雾计算模式的可信传感云实现框架,设计了可信评估、可信数据收集、可信存储等关键技术,也为后续研究提出可供借鉴的新思路。
中图分类号:
王田,沈雪微,罗皓,陈柏生,王国军,贾维嘉. 基于雾计算的可信传感云研究进展[J]. 通信学报, 2019, 40(3): 170-181.
Tian WANG,Xuewei SHEN,Hao LUO,Baisheng CHEN,Guojun WANG,Weijia JIA. Research progress of trusted sensor-cloud based on fog computing[J]. Journal on Communications, 2019, 40(3): 170-181.
表1
传感器网络与云的结合"
网络 | 与云的结合 | 服务 | 主要贡献 |
WSN | CC-WSN [ | XaaS⑤应用 | 数据源实时处理是做出决策的关键,传感云可提供分析、监控、存储、计算等多种类型的数据服务 |
WBAN① | WBAN-cloud[13] | 移动传感应用/多途径数据传递 | 医疗领域的传感云应用着重考虑安全与隐私问题,提供隐私与可信兼容的方式实现远程服务是必要的 |
WSAN② | sensor-cloud[ | SaaS应用 | 传感云并不会将传感器数据作为一种服务来提供,而是专注于通过云来管理传感器 |
IOT③ | CloudIoT [ | IoTaaS⑥应用 | 用户能够在不关心传感器的物理位置和访问规则的情况下,从不同的传感器所有者处获得服务 |
表4
现有雾计算设计方案"
方案 | 可信 | 特征 | 优势 | 缺陷 | 说明 |
分级存储方案[ | √ | 存储技术 | 编码速度快,完整性高 | 涉及传递机制,灵活性相对弱 | 完善传统云存储技术,对抗网络威胁,实现系统可信 |
大数据环境下健康检测[ | × | 大数据 | 准确性高 | 时间性能相对弱 | 针对基础设施实现健康监测 |
传感云系统数据监控[ | × | 结构化 | 灵活性高 | 响应速度不足 | 与传感云相结合的健康监测 |
基于雾计算的节点信任评价[ | √ | 信任评价 | 安全性高 | 间接完整度不足 | 雾端设定信任评价层次结构,完善数据可信度 |
基于雾计算模式的数据收集[ | √ | 数据收集 | 安全可靠 | 灵活性相对弱 | 利用雾端的计算能力辅助传感云进行可靠的数据收集 |
[1] | GUPTA A , MUKHERJEE N . Implementation of virtual sensors for building a sensor-cloud environment[C]// International Conference on Communication Systems and Networks. IEEE, 2016: 1-8. |
[2] | SELIMI M , CERDAALABERN L , WANG L ,et al. Bandwidth-aware service placement in community network micro-clouds[C]// Conference on Local Computer Networks. IEEE, 2017: 220-223. |
[3] | MISRA S , CHATTERJEE S , OBAIDAT M S . On theoretical modeling of sensor cloud:a paradigm shift from wireless sensor network[J]. IEEE Systems Journal, 2017,11(2): 1084-1093. |
[4] | ZHOU P , ZUO D H , HOU K ,et al. A decentralized compositional framework for dependable decision process in self-managed cyber physical systems[J]. Sensors, 2017,17(11):2580- |
[5] | 林晖, 于孟洋, 田有亮 ,等. 移动云计算中基于动态博弈和可靠推荐的传递信誉机制[J]. 通信学报, 2018,39(5): 85-93. |
LIN H , YU M Y , TIAN Y L ,et al. Dynamic game and reliable recommendation based transferring reputation mechanism for mobile cloud computing[J]. Journal on Communications, 2018,39(5): 85-93. | |
[6] | TAK B C , KWON Y , URGAONKAR B . Resource accounting of shared it resources in multi-tenant clouds[J]. IEEE Transactions on Services Computing, 2015,10(2): 302-314. |
[7] | ZHU C , LI X , LEUNG V C M ,et al. Job scheduling for cloud computing integrated with wireless sensor network[C]// International Conference on Cloud Computing Technology and Science. IEEE, 2014: 62-69. |
[8] | 王田, 李洋, 贾维嘉 ,等. 传感云安全研究进展[J]. 通信学报, 2018,39(3): 35-52. |
WANG T , LI Y , JIA W J ,et al. Research progress of sen-sor-cloud security[J]. Journal on Communications, 2018,39(3): 35-52. | |
[9] | SANTOS L , IGOR L ,et al. Olympus:the cloud of sensors[J]. IEEE Cloud Computing, 2015,2(2): 48-56. |
[10] | 孟倩, 马建峰, 陈克非 ,等. 基于云计算平台的物联网加密数据比较方案[J]. 通信学报, 2018,39(4): 167-175. |
MENG Q , MA J F , CHEN K F ,et al. Data comparable encryption scheme based on cloud computing in Internet of things[J]. Journal on Communications, 2018,39(4): 167-175. | |
[11] | BOTTA A , DE D W , PERSICO V ,et al. Integration of cloud computing and internet of things:a survey[J]. Future Generation Computer Systems, 2016,56: 684-700. |
[12] | WANG T , ZENG J D , BHUIYAN M Z A ,et al. Trajectory privacy preservation based on a fog structure for cloud location services[J]. IEEE Access, 2017,5: 7692-7701. |
[13] | DIVI K , LIU H . Modeling of WBAN and cloud integration for secure and reliable healthcare[C]// International Conference on Body Area Networks. ICST, 2013: 128-131. |
[14] | ALMASHAQBEH G , HAYAJNEH T , VASILAKOS A ,et al. Qos-aware health monitoring system using cloud-based WBANS[J]. Journal of Medical Systems, 2014,38(10):121. |
[15] | 王文华, 王田, 吴群 ,等. 传感网中时延受限的移动式数据收集方法综述[J]. 计算机研究与发展, 2017,54(3): 474-492. |
WANG W H , WANG T , WU Q ,et al. Survey of delay-constrained data collection with mobile elements in WSNs[J]. Journal of Computer Research and Development, 2017,54(3): 474-492. | |
[16] | ZHU C , LEUNG V C M , YANG L T ,et al. Trust assistance in sensor-cloud[C]// Conference on Computer Communications Workshops. IEEE, 2015: 342-347. |
[17] | YANG C , LIU C , ZHANG X ,et al. A time efficient approach for detecting errors in big sensor data on cloud[J]. IEEE Transactions on Parallel and Distributed Systems, 2015,26(2): 329-339. |
[18] | ZHU C , SHENG Z , LEUNG V C M ,et al. Toward offering more useful data reliably to mobile cloud from wireless sensor network[J]. IEEE Transactions on Emerging Topics in Computing, 2015,3(1): 84-94. |
[19] | SENGUPTA AVIK , RAVI T .et al. Fog-aided wireless networks for content delivery:fundamental latency tradeoffs[J]. IEEE Transactions on Information Theory, 2017,63(10): 6650-6678. |
[20] | ZHU C S , LEUNG V C M , WANG K ,et al. Multi-method data delivery for green sensor-cloud[J]. IEEE Communications Magazine, 2017,55(5): 176-182. |
[21] | 王田, 梁玉珠, 彭臻 ,等. 无线传感器网络中移动目标探测跟踪研究进展[J]. 软件学报, 2017,28(s1): 115-128. |
WANG T , LIANG Y Z , PENG Z ,et al. Research advance of detection-centric target tracking with mobile elements in wireless sensor networks[J]. Journal of Software, 2017,28(s1): 115-128. | |
[22] | PARICHEHREH A , SPAGNOLINI U . Inter-and intra-cloud resource allocation for delay sensitive industrial networks[C]// Conference on Networks and Communications. IEEE, 2014: 1-5. |
[23] | LIU B , JIA D , WANG J ,et al. Cloud-assisted safety message dissemination in VANET-cellular heterogeneous wireless network[J]. IEEE Systems Journal, 2017,11(1): 128-139. |
[24] | KUMARI R , . An efficient data offloading to cloud mechanism for smart healthcare sensors[C]// International Conference on Next Generation Computing Technologies. IEEE, 2015: 90-95. |
[25] | TSO R , ALELAIWI A , RAHMAN S ,et al. Privacy-preserving data communication through secure multi-party computation in healthcare sensor cloud[J]. Journal of Signal Processing Systems, 2017,89(1): 51-59. |
[26] | LAI Y , YANG F , SU J ,et al. Fog-based two-phase event monitoring and data gathering in vehicular sensor networks[J]. Sensors, 2017,18(1):82. |
[27] | BUTUN I , EROL-KANTARCI M , KANTARCI B ,et al. Cloud-centric multi-level authentication as a service for secure public safety device networks[J]. IEEE Communications Magazine, 2016,54(4): 47-53. |
[28] | DONG M , OTA K , LIU A . Preserving source-location privacy through redundant fog loop for wireless sensor networks[C]// International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable,Autonomic and Secure Computing; Pervasive Intelligence and Computing. IEEE, 2015: 1835-1842. |
[29] | HUANG X , XIANG Y , BERTINO E ,et al. Robust multi-factor authentication for fragile communications[J]. IEEE Transactions on Dependable and Secure Computing, 2014,11(6): 568-581. |
[30] | 刘健 . 智能交通灯系统中雾计算适用的车辆信息安全采集协议研究[D]. 上海:华东师范大学, 2017. |
LIU J . Research on vehicle information security acquisition protocol in intelligent traffic light system for fog computing[D]. Shanghai:East China Normal University. 2017. | |
[31] | WANG T , PENG Z , WEN S ,et al. Reliable wireless connections for fast-moving rail users based on a chained fog structure[J]. Information Sciences, 2017,379: 160-176. |
[32] | CORCORAN P , DATTA S K . Mobile-edge computing and the internet of things for consumers:extending cloud computing and services to the edge of the network[J]. IEEE Consumer Electronics Magazine, 2016,5(4): 73-74. |
[33] | WANG T , ZENG J D , LAI Y ,et al. Data collection from WSNs to the cloud based on mobile fog elements[J]. Future Generation Computer Systems, 2017,Doi:10.1016/ j.future.2017.07.031. |
[34] | 贾维嘉, 周小杰 . 雾计算的概念、相关研究与应用[J]. 通信学报, 2018,39(5): 153-165. |
JIA W J , ZHOU Xi J . Concepts,issues,and applications of fog computing[J]. Journal on Communications, 2018,39(5): 153-165. | |
[35] | LIU Q , WANG G J , LIU X H ,et al. Achieving reliable and secure services in cloud computing environments[J]. Computers and Electrical Engineering, 2017,59: 153-164. |
[36] | WANG T , ZHOU J Y , HUANG M Z ,et al. Fog-based storage technology to fight with cyber threat[J]. Future Generation Computer Systems, 2018,83: 208-218. |
[37] | WANG T , MD ZAKIRUL A B , WANG G J ,et al. Big data reduction for smart city’s critical infrastructural health monitoring[J]. IEEE Communications Magazine, 2018,56(3): 128-133. |
[38] | MD ZAKIRUL A B , WANG G J , WU J ,et al. Dependable structural health monitoring using wireless sensor networks[J]. IEEE Transactions on Dependable and Secure Computing, 2017,14(4): 363-376. |
[39] | WANG T , ZHANG G X , MD ZAKIRUL A B ,et al. A novel trust mechanism based on fog computing in sensor-cloud system[J]. Future Generation Computer Systems, 2018,DOI:10.1016/j.future.2018 .05.049. |
[40] | WANG T , LI Y , FANG W ,et al. A comprehensive trustworthy data collection approach in sensor-cloud systems[J]. IEEE Transactions on Big Data, 2018,DOI:10.1109/TBDATA.2018.2811501. |
[41] | GONG W , QI L , XU Y . Privacy-aware multidimensional mobile service quality prediction and recommendation in distributed fog environment[J]. Wireless Communications and Mobile Computing, 2018,2018(4): 1-8. |
[42] | HAMID H , RAHMAN M , HOSSAIN S ,et al. A security model for preserving the privacy of medical big data in a healthcare cloud using a fog computing facility with pairing-based cryptography[J]. IEEE Access, 2017,5: 22313-22328. |
[43] | QI L , ZHANG X , DOU W ,et al. A two-stage locality-sensitive hashing based approach for privacy-preserving mobile service recommendation in cross-platform edge environment[J]. Future Generation Computer Systems, 2018,88: 636-643. |
[44] | ZHU L , ZHANG C , XU C ,et al. RTSense:providing reliable trust-based crowd sensing services in CVCC[J]. IEEE Network, 2018,32(3): 20-26. |
[45] | WANG T , LI Y , WANG G J ,et al. Sustainable and efficient data collection from WSNs to cloud[J]. IEEE Transactions on Sustainable Computing, 2017,DOI:10.1109/ TSUSC.2017.2690301. |
[46] | WANG T , ZHOU J Y , CHEN X L ,et al. A three-layer privacy preserving cloud storage scheme based on computational intelligence in fog computing[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018,2(1): 3-12. |
[47] | ZHANG G X , WANG T , MD Z A B ,et al. A fog-based hierarchical trust mechanism for sensor-cloud underlying structure[C]// International Symposium on Parallel and Distributed Processing with Applications. IEEE, 2017: 481-485. |
[48] | 王田, 张广学, 蔡绍滨 ,等. 传感云中的信任评价机制研究进展[J]. 通信学报, 2018,39(6): 37-51. |
WANG T , ZHANG G X , CAI S B ,et al. Survey on trust evaluation mechanism in sensor-cloud[J]. Journal on Communications, 2018,39(6): 37-51. | |
[49] | GAO C Z , CHENG Q , LI X ,et al. Cloud-assisted privacy-preserving profile-matching scheme under multiple keys in mobile social network[J].Cluster Computing, 2018,DOI:10.1007/s10586-017-1649-y. |
[50] | PENG T , LIU Q , MENG D C ,et al. Collaborative trajectory privacy preserving scheme in location-based services[J]. Information Sciences, 2017,387: 165-179. |
[1] | 董江涛, 闫沛文, 杜瑞忠. 雾计算中基于无配对CP-ABE可验证的访问控制方案[J]. 通信学报, 2021, 42(8): 139-150. |
[2] | 杜瑞忠, 闫沛文, 刘妍. 雾计算中细粒度属性更新的外包计算访问控制方案[J]. 通信学报, 2021, 42(3): 160-170. |
[3] | 王田,张广学,蔡绍滨,贾维嘉,王国军. 传感云中的信任评价机制研究进展[J]. 通信学报, 2018, 39(6): 37-51. |
[4] | 贾维嘉,周小杰. 雾计算的概念、相关研究与应用[J]. 通信学报, 2018, 39(5): 153-165. |
[5] | 梁俊斌,周翔,李陶深. 移动低占空比无线传感网中低能耗的主动邻居发现算法[J]. 通信学报, 2018, 39(4): 45-55. |
[6] | 王田,李洋,贾维嘉,王国军,彭绍亮. 传感云安全研究进展[J]. 通信学报, 2018, 39(3): 35-52. |
[7] | 张策,李鸥,童昕,杨延平. 基于压缩感知与矩阵补全技术的WSN数据收集算法[J]. 通信学报, 2018, 39(2): 164-173. |
[8] | 纪祥敏,赵波,刘金会,贾建卫,张焕国,向騻. 基于对称矩阵分解的无线传感网密钥恢复攻击[J]. 通信学报, 2018, 39(10): 87-96. |
[9] | 王天舒,张功萱,杨曦晨. 基于ZigBee的无线传感网可信溶液监测系统[J]. 通信学报, 2017, 38(Z2): 67-77. |
[10] | 周光海,宁兆龙,陈志奎,钟华,胡月明. 基于核偏最小二乘法的物联网无线传感网络故障分析与研究[J]. 通信学报, 2017, 38(Z2): 94-98. |
[11] | 蔡青松,陈希厚. 无线传感网中基于谱矩的链路优化策略[J]. 通信学报, 2017, 38(Z2): 170-177. |
[12] | 舒坚,刘满兰,郑巍. 基于AdaBoost的链路质量预测机制研究[J]. 通信学报, 2017, 38(Z1): 39-45. |
[13] | 张策,张霞,李鸥,梅关林,韩哲,张大龙,刘广怡. 不可靠链路下基于压缩感知的WSN数据收集算法[J]. 通信学报, 2016, 37(9): 131-141. |
[14] | 牛晓光,魏川博,姚亚兰. 传感网中能量均衡高效的源位置隐私保护协议[J]. 通信学报, 2016, 37(4): 23-33. |
[15] | 徐琨,刘宏立,詹杰,马子骥. 容忍恶意攻击的无线传感网络安全定位算法[J]. 通信学报, 2016, 37(12): 95-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|