通信学报 ›› 2020, Vol. 41 ›› Issue (7): 1-17.doi: 10.11959/j.issn.1000-436x.2020145
• 专题:移动人工智能 • 下一篇
梁应敞1,谭俊杰1,Dusit Niyato2
修回日期:
2020-06-22
出版日期:
2020-07-25
发布日期:
2020-08-01
作者简介:
梁应敞(1968- ),男,江西赣州人,博士,电子科技大学教授、博士生导师,主要研究方向为智能无线通信、认知无线电、智慧物联网等|谭俊杰(1994- ),男,广东肇庆人,电子科技大学博士生,主要研究方向为动态频谱共享、认知无线电、智能无线通信|Dusit Niyato(1978- ),男,泰国北柳府人,博士,南洋理工大学教授、博士生导师,主要研究方向为无线能量采集、物联网和传感器网络等
基金资助:
Yingchang LIANG1,Junjie TAN1,Dusit Niyato2
Revised:
2020-06-22
Online:
2020-07-25
Published:
2020-08-01
Supported by:
摘要:
近年来,人工智能技术已被应用于无线通信领域,以解决传统无线通信技术面对信息爆炸和万物互联等新发展趋势所遇到的瓶颈问题。首先介绍深度学习、深度强化学习和联邦学习三类具有代表性的人工智能技术;然后通过对这三类技术在无线通信中的无线传输、频谱管理、资源配置、网络接入、网络及系统优化5个方面的应用进行综述,分析和总结它们在解决无线通信问题时的原理、适用性、设计方法和优缺点;最后围绕存在的局限性指出智能无线通信技术的未来发展趋势和研究方向,期望为无线通信领域的后续研究提供帮助和参考。
中图分类号:
梁应敞,谭俊杰,Dusit Niyato. 智能无线通信技术研究概况[J]. 通信学报, 2020, 41(7): 1-17.
Yingchang LIANG,Junjie TAN,Dusit Niyato. Overview on intelligent wireless communication technology[J]. Journal on Communications, 2020, 41(7): 1-17.
[1] | CISCO. Cisco visual networking index:global mobile data traffic forecast update,2017–2022[R]. Cisco Public Information, 2017. |
[2] | LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015,521(7553): 436-444. |
[3] | MNIH V , KAVUKCUOGLU K , SILVER D ,et al. Human-level control through deep reinforcement learning[J]. Nature, 2015,518(7540): 529-533. |
[4] | YANG Q , LIU Y , CHEN T ,et al. Federated machine learning:concept and applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019,10(2): 1-19. |
[5] | LECUN Y , BOTTOU L , BENGIO Y ,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11): 2278-2324. |
[6] | YOUNG T , HAZARIKA D , PORIA S ,et al. Recent trends in deep learning based natural language processing[J]. IEEE Computational Intelligence Magazine, 2018,13(3): 55-75. |
[7] | AMARJYOTI S . Deep reinforcement learning for robotic manipulation-the state of the art[J]. arXiv Preprint,arXiv:1701.08878, 2017 |
[8] | MCMAHAN H B , MOORE E , RAMAGE D ,et al. Communication-efficient learning of deep networks from decentralized data[J]. arXiv Preprint,arXiv:1602.05629, 2016 |
[9] | BISHOP C M . Pattern recognition and machine learning[M]. Berlin: SpringerPress, 2006. |
[10] | CYBENKO G . Approximation by superpositions of a sigmoidal function[J]. Mathematics of Control,Signals and Systems, 1989,2(4): 303-314. |
[11] | DAYAN P , ABBOTT L F . Theoretical neuroscience:computational and mathematical modeling of neural systems[M]. Cambridge: MIT PressPress, 2001. |
[12] | MIKOLOV T , KARAFIáT M , BURGET L ,et al. Recurrent neural network based language model[C]// Eleventh Annual Conference of the International Speech Communication Association. Trier:DBLP, 2010: 1045-1048. |
[13] | HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural computation, 1997,9(8): 1735-1780. |
[14] | LIU W , WANG Z , LIU X ,et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017,234: 11-26. |
[15] | LUONG N C , HOANG D T , GONG S ,et al. Applications of deep reinforcement learning in communications and networking:a survey[J]. IEEE Communications Surveys & Tutorials, 2019,21(4): 3133-3174. |
[16] | SUTTON R S , BARTO A G . Introduction to reinforcement learning[M]. Cambridge: MIT pressPress, 1998. |
[17] | VAN H H , GUEZ A , SILVER D . Deep reinforcement learning with double q-learning[C]// Thirtieth AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2016: 2094-2100. |
[18] | WANG Z , SCHAUL T , HESSEL M ,et al. Dueling network architectures for deep reinforcement learning[J]. arXiv Preprint,arXiv:1511.06581, 2015 |
[19] | LILLICRAP T P , HUNT J J , PRITZEL A ,et al. Continuous control with deep reinforcement learning[J]. arXiv Preprint,arXiv:1509.02971, 2015 |
[20] | SCHULMAN J , WOLSKI F , DHARIWAL P ,et al. Proximal policy optimization algorithms[J]. arXiv Preprint,arXiv:1707.06347, 2017 |
[21] | MNIH V , BADIA A P , MIRZA M ,et al. Asynchronous methods for deep reinforcement learning[C]// International Conference on Machine Learning. New York:ACM Press, 2016: 1928-1937. |
[22] | NEUMANN D , WIESE T , UTSCHICK W . Learning the MMSE channel estimator[J]. IEEE Transactions on Signal Processing, 2018,66(11): 2905-2917. |
[23] | BALEVI E , DOSHI A , ANDREWS J G . Massive MIMO channel estimation with an untrained deep neural network[J]. IEEE Transactions on Wireless Communications, 2020,19(3): 2079-2090. |
[24] | O'SHEA T , KARRA K , CLANCY T C . Learning approximate neural estimators for wireless channel state information[C]// 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP). Piscataway:IEEE Press, 2017: 1-7. |
[25] | CHUN C J , KANG J M , KIM I M . Deep learning-based joint pilot design and channel estimation for multiuser MIMO channels[J]. IEEE Communications Letters, 2019,23(11): 1999-2003. |
[26] | QING C , CAI B , YANG Q ,et al. ELM-based superimposed CSI feedback for FDD Massive MIMO system[J]. IEEE Access, 2020,8: 53408-53418. |
[27] | ARNOLD M , D?RNER S , CAMMERER S ,et al. Enabling FDD massive MIMO through deep learning-based channel prediction[J]. arXiv Preprint,arXiv:1901.03664, 2019 |
[28] | YANG Y , GAO F , LI G Y ,et al. Deep learning-based downlink channel prediction for FDD massive MIMO system[J]. IEEE Communications Letters, 2019,23(11): 1994-1998. |
[29] | LIANG Y C , CHIN F P S . Downlink channel covariance matrix (DCCM) estimation and its applications in wireless DS-CDMA systems[J]. IEEE Journal on Selected Areas in Communications, 2001,19(2): 222-232. |
[30] | WEN C K , SHIH W T , JIN S . Deep learning for massive MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2018,7(5): 748-751. |
[31] | WANG T , WEN C K , JIN S ,et al. Deep learning-based CSI feedback approach for time-varying massive MIMO channels[J]. IEEE Wireless Communications Letters, 2018,8(2): 416-419. |
[32] | HE H , WEN C K , JIN S ,et al. A model-driven deep learning network for MIMO detection[C]// 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Piscataway:IEEE Press, 2018: 584-588. |
[33] | TAN X , ZHONG Z , ZHANG Z ,et al. Low-Complexity message passing MIMO detection algorithm with deep neural network[C]// 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Piscataway:IEEE Press, 2018: 559-563. |
[34] | WEI Y , ZHAO M M , ZHAO M ,et al. Learned conjugate gradient descent network for massive MIMO detection[J]. arXiv Preprint,arXiv:1906.03814, 2019 |
[35] | SAMUEL N , DISKIN T , WIESEL A . Learning to detect[J]. IEEE Transactions on Signal Processing, 2019,67(10): 2554-2564. |
[36] | YE H , LI G Y , JUANG B H . Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2017,7(1): 114-117. |
[37] | O’SHEA T , HOYDIS J . An introduction to deep learning for the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2017,3(4): 563-575. |
[38] | XUE S , MA Y , YI N ,et al. Unsupervised deep learning for MU-SIMO joint transmitter and noncoherent receiver design[J]. IEEE Wireless Communications Letters, 2018,8(1): 177-180. |
[39] | BALEVI E , ANDREWS J G . One-bit OFDM receivers via deep learning[J]. IEEE Transactions on Communications, 2019,67(6): 4326-4336. |
[40] | LIANG Y C . Dynamic spectrum management:from cognitive radio to blockchain and artificial intelligence[M]. Berlin: SpringerPress, 2020. |
[41] | LIU C , WANG J , LIU X ,et al. Deep CM-CNN for spectrum sensing in cognitive radio[J]. IEEE Journal on Selected Areas in Communications, 2019,37(10): 2306-2321. |
[42] | XIE J , LIU C , LIANG Y C ,et al. Activity pattern aware spectrum sensing:a cnn-based deep learning approach[J]. IEEE Communications Letters, 2019,23(6): 1025-1028. |
[43] | LEES W M , WUNDERLICH A , JEAVONS P J ,et al. Deep learning classification of 3.5-GHz band spectrograms with applications to spectrum sensing[J]. IEEE Transactions on Cognitive Communications and Networking, 2019,5(2): 224-236. |
[44] | LEE W , KIM M , CHO D H . Deep cooperative sensing:cooperative spectrum sensing based on convolutional neural networks[J]. IEEE Transactions on Vehicular Technology, 2019,68(3): 3005-3009. |
[45] | YU L , WANG Q , GUO Y ,et al. Spectrum availability prediction in cognitive aerospace communications:a deep learning perspective[C]// 2017 Cognitive Communications for Aerospace Applications Workshop (CCAA). Piscataway:IEEE Press, 2017: 1-4. |
[46] | YU L , CHEN J , DING G ,et al. Spectrum prediction based on Taguchi method in deep learning with long short-term memory[J]. IEEE Access, 2018,6: 45923-45933. |
[47] | YU Y , WANG T , LIEW S C . Deep-reinforcement learning multiple access for heterogeneous wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2019,37(6): 1277-1290. |
[48] | TAN J , ZHANG L , LIANG Y C ,et al. Intelligent sharing for LTE and Wi-Fi systems in unlicensed bands:a deep reinforcement learning approach[J]. IEEE Transactions on Communications, 2020,68(5): 2793-2808. |
[49] | WANG S , LIU H , GOMES P H ,et al. Deep reinforcement learning for dynamic multichannel access in wireless networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2018,4(2): 257-265. |
[50] | NAPARSTEK O , COHEN K . Deep multi-user reinforcement learning for distributed dynamic spectrum access[J]. IEEE Transactions on Wireless Communications, 2018,18(1): 310-323. |
[51] | LIU X , XU Y , JIA L ,et al. Anti-jamming communications using spectrum waterfall:a deep reinforcement learning approach[J]. IEEE Communications Letters, 2018,22(5): 998-1001. |
[52] | XIE W , HU S , YU C ,et al. Deep learning in digital modulation recognition using high order cumulants[J]. IEEE Access, 2019,7: 63760-63766. |
[53] | LUO B , PENG Q , COSMAN P C ,et al. Robustness of deep modulation recognition under AWGN and Rician fading[C]// 2018 52nd Asilomar Conference on Signals,Systems,and Computers. Piscataway:IEEE Press, 2018: 447-450. |
[54] | LIN Y , TU Y , DOU Z ,et al. The application of deep learning in communication signal modulation recognition[C]// 2017 IEEE/CIC International Conference on Communications in China (ICCC). Piscataway:IEEE Press, 2017: 1-5. |
[55] | WANG Y , LIU M , YANG J ,et al. Data-driven deep learning for automatic modulation recognition in cognitive radios[J]. IEEE Transactions on Vehicular Technology, 2019,68(4): 4074-4077. |
[56] | KARRA K , KUZDEBA S , PETERSEN J . Modulation recognition using hierarchical deep neural networks[C]// 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). Piscataway:IEEE Press, 2017: 1-3. |
[57] | ZENG Y , ZHANG M , HAN F ,et al. Spectrum analysis and convolutional neural network for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2019,8(3): 929-932. |
[58] | HONG D , ZHANG Z , XU X . Automatic modulation classification using recurrent neural networks[C]// 2017 3rd IEEE International Conference on Computer and Communications (ICCC). Piscataway:IEEE Press, 2017: 695-700. |
[59] | ZHANG D , DING W , ZHANG B ,et al. Automatic modulation classification based on deep learning for unmanned aerial vehicles[J]. Sensors, 2018,18(3):924. |
[60] | ZHANG M , ZENG Y , HAN Z ,et al. Automatic modulation recognition using deep learning architectures[C]// 2018 IEEE 19th Internation al Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Piscataway:IEEE Press, 2018: 1-5. |
[61] | HU S , PEI Y , LIANG P P ,et al. Deep neural network for robust modulation classification under uncertain noise conditions[J]. IEEE Transactions on Vehicular Technology, 2020,69(1): 564-577. |
[62] | LI X , FANG J , CHENG W ,et al. Intelligent power control for spectrum sharing in cognitive radios:a deep reinforcement learning approach[J]. IEEE Access, 2018,6: 25463-25473. |
[63] | NASIR Y S , GUO D . Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2019,37(10): 2239-2250. |
[64] | TAN J , ZHANG L , LIANG Y C . Deep reinforcement learning for channel selection and power control in D2D networks[C]// 2019 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2019: 1-6. |
[65] | YE H , LI G Y , JUANG B H F . Deep reinforcement learning based resource allocation for V2V communications[J]. IEEE Transactions on Vehicular Technology, 2019,68(4): 3163-3173. |
[66] | QIAN Y , HU L , CHEN J ,et al. Privacy-aware service placement for mobile edge computing via federated learning[J]. Information Sciences, 2019,505: 562-570. |
[67] | REN J , WANG H , HOU T ,et al. Federated learning-based computation offloading optimization in edge computing-supported Internet of things[J]. IEEE Access, 2019,7: 69194-69201. |
[68] | XU Y , XU W , WANG Z ,et al. Load balancing for ultradense networks:a deep reinforcement learning-based approach[J]. IEEE Internet of Things Journal, 2019,6(6): 9399-9412. |
[69] | ZHAO N , LIANG Y C , NIYATO D ,et al. Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2019,18(11): 5141-5152. |
[70] | ZHANG C , LIU Z , GU B ,et al. A deep reinforcement learning based approach for cost-and energy-aware multiflow mobile data offloading[J]. IEICE Transactions on Communications, 2018,7: 1625-1634. |
[71] | FENG K , WANG Q , LI X ,et al. Deep reinforcement learning based intelligent reflecting surface optimization for MISO communication systems[J]. IEEE Wireless Communications Letters, 2020,9(5): 745-749. |
[72] | LIU J , KRISHNAMACHARI B , ZHOU S ,et al. DeepNap:data-driven base station sleeping operations through deep reinforcement learning[J]. IEEE Internet of Things Journal, 2018,5(6): 4273-4282. |
[73] | JUNHONG Y E , ZHANG Y J . DRAG:deep reinforcement learning based base station activation in heterogeneous networks[J]. IEEE Transactions on Mobile Computing, 2019,doi:10.1109/TMC.2019.2922602. |
[74] | WU J , YU P , FENG L ,et al. 3D aerial base station position planning based on deep Q-network for capacity enhancement[C]// 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). Piscataway:IEEE Press, 2019: 482-487. |
[75] | MISMAR F B , EVANS B L . Deep Q-learning for self-organizing networks fault management and radio performance improvement[C]// 2018 52nd Asilomar Conference on Signals,Systems,and Computers. Piscataway:IEEE Press, 2018: 1457-1461. |
[76] | NGUYEN T D , MARCHAL S , MIETTINEN M ,et al. D?oT:a federated self-learning anomaly detection system for IoT[C]// 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). Piscataway:IEEE Press, 2019: 756-767. |
[77] | QING C , YU W , CAI B ,et al. ELM-based frame synchronization in burst-mode communication systems with nonlinear distortion[J]. IEEE Wireless Communications Letters, 2020,9(6): 915-919. |
[78] | HUTTER F , KOTTHOFF L , VANSCHOREN J . Automated machine learning[M]. Berlin: SpringerPress, 2019. |
[79] | NICHOL A , SCHULMAN J . Reptile:a scalable meta-learning algorithm[J]. arXiv Preprint,arXiv:1803.02999, 2018 |
[80] | SILVER D , SCHRITTWIESER J , SIMONYAN K ,et al. Mastering the game of go without human knowledge[J]. Nature, 2017,550(7676): 354-359. |
[81] | 王元卓, 林闯, 程学旗 ,等. 基于随机博弈模型的网络攻防量化分析方法[J]. 计算机学报, 2010,33(9): 1748-1762. |
WANG Y Z , LIN C , CHENG X Q ,et al. Analysis for network attack-defense based on stochastic game model[J]. Chinese Journal of Computers, 2010,33(9): 1748-1762. | |
[82] | LIN Y , HAN S , MAO H ,et al. Deep gradient compression:reducing the communication bandwidth for distributed training[J]. arXiv Preprint,arXiv:1712.01887, 2017 |
[83] | KONE?NY J , MCMAHAN H B , YU F X ,et al. Federated learning:strategies for improving communication efficiency[J]. arXiv Preprint,arXiv:1610.05492, 2016 |
[84] | HARDY S , HENECKA W , IVEY-LAW H ,et al. Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption[J]. arXiv Preprint,arXiv:1711.10677, 2017 |
[85] | GEYER R C , KLEIN T , NABI M . Differentially private federated learning:a client level perspective[J]. arXiv Preprint,arXiv:1712.07557, 2017 |
[86] | LI L , XU W , CHEN T ,et al. RSA:Byzantine-robust stochastic aggregation methods for distributed learning from heterogeneous datasets[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2019: 1544-1551. |
[1] | 陈东昱, 陈华, 范丽敏, 付一方, 王舰. 基于深度学习的随机性检验策略研究[J]. 通信学报, 2023, 44(6): 23-33. |
[2] | 李荣鹏, 汪丙炎, 张宏纲, 赵志峰. 知识增强的语义通信接收端设计[J]. 通信学报, 2023, 44(6): 70-76. |
[3] | 马鑫迪, 李清华, 姜奇, 马卓, 高胜, 田有亮, 马建峰. 面向Non-IID数据的拜占庭鲁棒联邦学习[J]. 通信学报, 2023, 44(6): 138-153. |
[4] | 金彪, 李逸康, 姚志强, 陈瑜霖, 熊金波. GenFedRL:面向深度强化学习智能体的通用联邦强化学习框架[J]. 通信学报, 2023, 44(6): 183-197. |
[5] | 马帅, 裴科, 祁华艳, 李航, 曹雯, 王洪梅, 熊海良, 李世银. 基于生成模型的地磁室内高精度定位算法研究[J]. 通信学报, 2023, 44(6): 211-222. |
[6] | 李开菊, 许强, 王豪. 冗余数据去除的联邦学习高效通信方法[J]. 通信学报, 2023, 44(5): 79-93. |
[7] | 余晟兴, 陈泽凯, 陈钟, 刘西蒙. DAGUARD:联邦学习下的分布式后门攻击防御方案[J]. 通信学报, 2023, 44(5): 110-122. |
[8] | 姜慧, 何天流, 刘敏, 孙胜, 王煜炜. 面向异构流式数据的高性能联邦持续学习算法[J]. 通信学报, 2023, 44(5): 123-136. |
[9] | 田有亮, 吴柿红, 李沓, 王林冬, 周骅. 基于激励机制的联邦学习优化算法[J]. 通信学报, 2023, 44(5): 169-180. |
[10] | 李元诚, 秦永泰. 基于深度强化学习的软件定义安全中台QoS实时优化算法[J]. 通信学报, 2023, 44(5): 181-192. |
[11] | 张佳乐, 朱诚诚, 孙小兵, 陈兵. 基于GAN的联邦学习成员推理攻击与防御方法[J]. 通信学报, 2023, 44(5): 193-205. |
[12] | 许国良, 谭峰, 冉泳屹, 陈丰. 面向多波束卫星系统的波束跳变与覆盖控制联合优化算法[J]. 通信学报, 2023, 44(4): 78-86. |
[13] | 江沸菠, 彭于波, 董莉. 面向6G的深度图像语义通信模型[J]. 通信学报, 2023, 44(3): 198-208. |
[14] | 余晟兴, 陈钟. 基于同态加密的高效安全联邦学习聚合框架[J]. 通信学报, 2023, 44(1): 14-28. |
[15] | 汤凌韬, 王迪, 刘盛云. 面向非独立同分布数据的联邦学习数据增强方案[J]. 通信学报, 2023, 44(1): 164-176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|