[1] |
HU Y C , PATEL M , SABELLA D ,et al. Mobile edge computing—a key technology towards 5G[J]. ETSI White Paper, 2015,11(11): 1-16.
|
[2] |
PARK J , SAMARAKOON S , BENNIS M ,et al. Wireless network intelligence at the edge[J]. Proceedings of the IEEE, 2019,107(11): 2204-2239.
|
[3] |
ZHOU Z , CHEN X , LI E ,et al. Edge intelligence:paving the last mile of artificial intelligence with edge computing[J]. Proceedings of the IEEE, 2019,107(8): 1738-1762.
|
[4] |
TAO M X , HUANG K B . Editorial:special topic on machine learning at network edges[J]. ZTE Communications, 2020,18(2): 1,30.
|
[5] |
MCMAHAN B , MOORE E , RAMAGE D ,et al. Communication-efficient learning of deep networks from decentralized data[C]// 2017 Artificial Intelligence and Statistics. Saarland:DBLP, 2017: 1273-1282.
|
[6] |
ALISTARH D , GRUBIC D , LI J ,et al. QSGD:communication-efficient SGD via randomized quantization and encoding[J]. Advances in Neural Information Processing Systems, 2018,3: 1710-1721.
|
[7] |
AJI A F , HEAFIELD K . Sparse communication for distributed gradient descent[J]. arXiv Preprint,arXiv:1704.05021, 2017.
|
[8] |
ZHU G X , WANG Y , HUANG K B . Broadband analog aggregation for low-latency federated edge learning[J]. IEEE Transactions on Wireless Communications, 2020,19(1): 491-506.
|
[9] |
MOHAMMADI A M , GüNDüZ D . Machine learning at the wireless edge:distributed stochastic gradient descent over-the-air[J]. IEEE Transactions on Signal Processing, 2020,68: 2155-2169.
|
[10] |
YANG K , JIANG T , SHI Y M ,et al. Federated learning via over-the-air computation[J]. IEEE Transactions on Wireless Communications, 2020,19(3): 2022-2035.
|
[11] |
ZHANG N F , TAO M X . Gradient statistics aware power control for over-the-air federated learning[J]. arXiv Preprint,arXiv:2003.02089, 2020.
|
[12] |
YANG H H , ARAFA A , QUEK T Q S ,et al. Age-based scheduling policy for federated learning in mobile edge networks[C]// 2020 IEEE International Conference on Acoustics. Piscataway:IEEE Press, 2020: 8743-8747.
|
[13] |
NISHIO T , YONETANI R . Client selection for federated learning with heterogeneous resources in mobile edge[C]// 2019 IEEE International Conference on Communications. Piscataway:IEEE Press, 2019: 1-7.
|
[14] |
YANG H H , LIU Z Z , QUEK T Q S ,et al. Scheduling policies for federated learning in wireless networks[J]. IEEE Transactions on Communications, 2020,68(1): 317-333.
|
[15] |
REN J K , HE Y H , WEN D Z ,et al. Scheduling for cellular federated edge learning with importance and channel awareness[J]. IEEE Transactions on Wireless Communications, 2020,19(11): 7690-7703.
|
[16] |
MA X , SUN H , HU R Q . Scheduling policy and power allocation for federated learning in NOMA based MEC[J]. arXiv Preprint,arXiv:2006.13044, 2020.
|
[17] |
AMIRIA M M , GüNDüZB D , KULKARNI S R ,et al. Convergence of update aware device scheduling for federated learning at the wireless edge[J]. arXiv Preprint,arXiv:2001.10402, 2020.
|
[18] |
ZENG Q S , DU Y Q , HUANG K B ,et al. Energy-efficient radio resource allocation for federated edge learning[C]// 2020 IEEE International Conference on Communications Workshops. Piscataway:IEEE Press, 2020: 1-6.
|
[19] |
CHEN M Z , YANG Z H , SAAD W ,et al. A joint learning and communications framework for federated learning over wireless networks[J]. IEEE Transactions on Wireless Communications, 2021,20(1): 269-283.
|
[20] |
SHI W Q , ZHOU S , NIU Z S ,et al. Joint device scheduling and resource allocation for latency constrained wireless federated learning[J]. IEEE Transactions on Wireless Communications, 2021,20(1): 453-467.
|
[21] |
DEKEL O , GILAD-BACHRACH R , SHAMIR O ,et al. Optimal distributed online prediction using mini-batches[J]. The Journal of Machine Learning Research, 2012,13: 165-202.
|