通信学报 ›› 2021, Vol. 42 ›› Issue (4): 177-184.doi: 10.11959/j.issn.1000-436x.2021081

• 学术论文 • 上一篇    下一篇

基于基扩展模型的改进正则化正交匹配追踪V2X快时变SC-FDMA信道估计

廖勇, 蔡志镕   

  1. 重庆大学微电子与通信工程学院,重庆 400044
  • 修回日期:2020-12-16 出版日期:2021-04-25 发布日期:2021-04-01
  • 作者简介:廖勇(1982- ),男,四川自贡人,博士,重庆大学副研究员、博士生导师,主要研究方向为下一代无线通信、人工智能、区块链及其在无线通信中的应用等。
    蔡志镕(1996- ),男,福建莆田人,重庆大学硕士生,主要研究方向为无线通信信道估计算法。
  • 基金资助:
    国家自然科学基金资助项目(61501066);重庆市自然科学基金资助项目(cstc2019jcyj-msxmX0017)

Basis expansion model-based improved regularized orthogonal matching pursuit channel estimation for V2X fast time-varying SC-FDMA

Yong LIAO, Zhirong CAI   

  1. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
  • Revised:2020-12-16 Online:2021-04-25 Published:2021-04-01
  • Supported by:
    The National Natural Science Foundation of China(61501066);The Natural Science Foundation of Chongq-ing(cstc2019jcyj-msxmX0017)

摘要:

为了进一步提升车联万物(V2X)的通信性能,首先根据信道冲激响应的稀疏性建立了适用于高速移动场景的基扩展模型(BEM);其次,证明了BEM系数具有稀疏性,将信道估计问题转化为稀疏信号重构问题,进而提出基于 BEM 的改进正则化正交匹配追踪(iROMP)迭代稀疏信道估计算法(简称为 BEM-iROMP 算法)。所提算法通过iROMP获取BEM系数,利用反馈结果不断迭代以达到最优信道估计。仿真结果表明,与最小二乘法、线性最小均方误差和BEM-LS信道估计算法相比,所提算法能够有效提高V2X快时变信道下单载波频分多址系统的归一化均方误差和误码率性能。

关键词: 信道估计, 车联万物, 高速移动, 压缩感知, 基扩展模型, 正则化正交匹配追踪, 单载波频分多址

Abstract:

In order to further improve the vehicle-to-everything (V2X) communication performance of the Internet of vehicles, a basis expansion model (BEM) was adopted and suitable for high-speed mobile scenarios to transform the channel estimation into a sparse signal reconstruction.Furthermore, it was proved that the BEM coefficients were sparse, and an improved regularized orthogonal matching pursuit (iROMP) channel estimation algorithm based on BEM (BEM-iROMP) was proposed.BEM coefficients were acquired by the iROMP, and finally the feedback results were iterated to achieve the optimal channel estimation.Simulation results show that in comparison with the least square (LS), linear minimum mean squared error (LMMSE), and BEM-LS channel estimation algorithms, the proposed algorithm can effectively improve the normalized mean square error (NMSE) and bit error rate (BER) performance.

Key words: channel estimation, vehicle-to-everything, high-speed mobility, compressed sensing, basis expansion model, regularized orthogonal matching pursuit, SC-FDMA

中图分类号: 

No Suggested Reading articles found!