通信学报 ›› 2021, Vol. 42 ›› Issue (7): 95-106.doi: 10.11959/j.issn.1000-436x.2021082

• 学术论文 • 上一篇    下一篇

基于生成对抗网络的僵尸网络检测

邹福泰, 谭越, 王林, 蒋永康   

  1. 上海交通大学网络空间安全学院,上海 200240
  • 修回日期:2020-12-20 出版日期:2021-07-25 发布日期:2021-07-01
  • 作者简介:邹福泰(1973− ),男,江西安福人,博士,上海交通大学高级工程师,主要研究方向为网络威胁感知和网络攻防技术
    谭越(1995− ),男,陕西西安人,上海交通大学硕士生,主要研究方向为网络攻防技术
    王林(1996− ),男,山东济南人,上海交通大学硕士生,主要研究方向为机器学习和威胁情报挖掘
    蒋永康(1996− ),男,贵州遵义人,上海交通大学博士生,主要研究方向为机器学习和恶意软件分析
  • 基金资助:
    国家重点研发计划基金资助项目(2020YFB1807500)

Botnet detection based on generative adversarial network

Futai ZOU, Yue TAN, Lin WANG, Yongkang JIANG   

  1. School of Cyber Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Revised:2020-12-20 Online:2021-07-25 Published:2021-07-01
  • Supported by:
    The National Key Research and Development Program of China(2020YFB1807500)

摘要:

为了解决僵尸网络隐蔽性强、难以识别等问题,提高僵尸网络检测精度,提出了基于生成对抗网络的僵尸网络检测方法。首先,通过将僵尸网络流量中的数据包重组为流,分别提取时间维度的流量统计特征和空间维度的流量图像特征;然后,基于生成对抗网络的僵尸网络流量特征生成算法,在2个维度生产僵尸网络特征样本;最后,结合深度学习在僵尸网络检测场景下的应用,提出了基于DCGAN的僵尸网络检测模型和基于BiLSTM-GAN的僵尸网络检测模型。实验表明,所提模型提高了僵尸网络检测能力和泛化能力。

关键词: 僵尸网络, 深度学习, 流量分析, 机器学习, 生成对抗网络

Abstract:

In order to solve the problems of botnets’ strong concealment and difficulty in identification, and improve the detection accuracy of botnets, a botnet detection method based on generative adversarial networks was proposed.By reorganizing the data packets in the botnet traffic into streams, the traffic statistics characteristics in the time dimension and the traffic image characteristics in the space dimension were extracted respectively.Then with the botnet traffic feature generation algorithm based on generative adversarial network, botnet feature samples were produced in the two dimensions.Finally combined with the application of deep learning in botnet detection scenarios, a botnet detection model based on DCGAN and a botnet detection model based on BiLSTM-GAN were proposed.Experiments show that the proposed model improves the botnet detection ability and generalization ability.

Key words: botnet, deep learning, traffic analysis, machine learning, GAN

中图分类号: 

No Suggested Reading articles found!