[1] |
RAMOTSOELA D , ABU-MAHFOUZ A , HANCKE G . A survey of anomaly detection in industrial wireless sensor networks with critical water system infrastructure as a case study[J]. Sensors, 2018,18(8): 2491.
|
[2] |
KIRLIDOG M , ASUK C . A fraud detection approach with data mining in health insurance[J]. Procedia-Social and Behavioral Sciences, 2012,62: 989-994.
|
[3] |
ANDRYSIAK T . Sparse representation and overcomplete dictionary learning for anomaly detection in electrocardiograms[J]. Neural Computing and Applications, 2020,32(5): 1269-1285.
|
[4] |
杨加, 李笑难, 张扬 ,等. 基于大数据分析的校园电子邮件异常行为检测技术研究[J]. 通信学报, 2018,39(S1): 116-123.
|
|
YANG J , LI X N , ZHANG Y ,et al. Abnormal behavior detection for campus email systems based on big data analysis[J]. Journal on Communications, 2018,39(S1): 116-123.
|
[5] |
DENNING D E . An intrusion-detection model[J]. IEEE Transactions on Software Engineering, 1987,13(2): 222-232.
|
[6] |
琚安康, 郭渊博, 李涛 ,等. 基于网络通信异常识别的多步攻击检测方法[J]. 通信学报, 2019,40(7): 57-66.
|
|
JU A K , GUO Y B , LI T ,et al. Multi-step attack detection method based on network communication anomaly recognition[J]. Journal on Communications, 2019,40(7): 57-66.
|
[7] |
ROUSSEEUW P J , LEROY A M . Robust regression and outlier detection[M]. New York: John Wiley & Sons,Inc., 1987.
|
[8] |
BARNETT V , LEWIS T , ABELES F . Outliers in statistical data[M]. 3rd ed. Hoboken: John Wiley & Sons, 1994.
|
[9] |
KNORR E M , NG R T , TUCAKOV V . Distance-based outliers:algorithms and applications[J]. The VLDB Journal, 2000,8(3/4): 237-253.
|
[10] |
KNORR E M , NG R T . A unified approach for mining outliers:properties and computation[C]// Proceedings of Conference of the Centre for Advanced Studies on Collaborative Research.[S.n.:s.l.], 1997: 219-222.
|
[11] |
JAIN A K , MURTY M N , FLYNN P J . Data clustering[J]. ACM Computing Surveys, 1999,31(3): 264-323.
|
[12] |
ESTER M , KRIEGEL H , SANDER J . A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]// International Conference on Knowledge Discovery & Data Mining. New York:ACM Press, 1996: 226-231.
|
[13] |
KARYPIS G , HAN E H , KUMAR V . Chameleon:hierarchical clustering using dynamic modeling[J]. Computer, 1999,32(8): 68-75.
|
[14] |
BREUNIG M M , KRIEGEL H P , NG R T ,et al. LOF:identifying density-based local outliers[C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York:ACM Press, 2000: 93-104.
|
[15] |
杨晓晖, 刘晓明 . 基于双向邻居修正的局部异常因子算法[J]. 通信学报, 2020,41(8): 130-140.
|
|
YANG X H , LIU X M . Local outlier factor algorithm based on correction of bidirectional neighbor[J]. Journal on Communications, 2020,41(8): 130-140.
|
[16] |
ZHANG K , HUTTER M , JIN H D . A new local distance-based outlier detection approach for scattered real-world data[C]// Advances in Knowledge Discovery and Data Mining. Berlin:Springer, 2009: 813-822.
|
[17] |
WANG L N , FENG C , REN Y J ,et al. Local outlier detection based on information entropy weighting[J]. International Journal of Sensor Networks, 2019,30(4): 207.
|
[18] |
SCHUBERT E , ZIMEK A , KRIEGEL H P . Generalized outlier detection with flexible kernel density estimates[C]// Proceedings of the 2014 SIAM International Conference on Data Mining.[S.n.:s.l.], 2014: 542-550.
|
[19] |
WAHID A , ANNAVARAPU C S R . NaNOD:a natural neighbour-based outlier detection algorithm[J]. Neural Computing and Applications, 2021,33(6): 2107-2123.
|
[20] |
ZHU Q S , FENG J , HUANG J L . Natural neighbor:a self-adaptive neighborhood method without parameter K[J]. Pattern Recognition Letters, 2016,80: 30-36.
|
[21] |
OMOHUNDRO S M . Five Balltree construction algorithms[R]. Technical Report,International Computer Science Institute, 1989.
|
[22] |
ZHANG L W , LIN J , KARIM R . Adaptive kernel density-based anomaly detection for nonlinear systems[J]. Knowledge-Based Systems, 2018,139: 50-63.
|
[23] |
JIN W , TUNG A K H , HAN J W ,et al. Ranking outliers using symmetric neighborhood relationship[C]// Advances in Knowledge Discovery and Data Mining. Berlin:Springer, 2006: 577-593.
|
[24] |
LIU F T , TING K M , ZHOU Z H . Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data, 2012,6(1): 1-39.
|
[25] |
LATECKI L J , LAZAREVIC A , POKRAJAC D . Outlier detection with kernel density functions[C]// Machine Learning and Data Mining in Pattern Recognition. Berlin:Springer, 2007: 61-75.
|
[26] |
TANG B , HE H B . A local density-based approach for outlier detection[J]. Neurocomputing, 2017,241: 171-180.
|
[27] |
HUANG J L , ZHU Q S , YANG L J ,et al. A non-parameter outlier detection algorithm based on Natural Neighbor[J]. Knowledge-Based Systems, 2016,92: 71-77.
|
[28] |
LI Z , ZHAO Y , BOTTA N ,et al. COPOD:copula-based outlier detection[C]// 2020 IEEE International Conference on Data Mining. Piscataway:IEEE Press, 2020: 1118-1123.
|
[29] |
FLACH P A , . Putting things in order:on the fundamental role of ranking in classification and probability estimation[C]// European Conference on Principles of Data Mining & Knowledge Discovery. Berlin:Springer, 2007: 2-3.
|