通信学报 ›› 2021, Vol. 42 ›› Issue (12): 54-64.doi: 10.11959/j.issn.1000-436x.2021238

• 学术论文 • 上一篇    下一篇

MIMO-OFDM系统的信道与脉冲噪声联合估计方法

吕新荣1, 李有明2, 国强3   

  1. 1 宁波大学科学技术学院,浙江 宁波 315300
    2 宁波大学信息科学与工程学院,浙江 宁波 315211
    3 哈尔滨工程大学信息与通信工程学院, 黑龙江 哈尔滨 150001
  • 修回日期:2021-08-02 出版日期:2021-12-01 发布日期:2021-12-01
  • 作者简介:吕新荣(1976- ),男,浙江永康人,博士,宁波大学讲师,主要研究方向为无线通信技术、电力线通信、稀疏信号处理等
    李有明(1963- ),男,陕西扶风人,博士,宁波大学教授,主要研究方向为无线宽带通信、电力线通信、协作中继、认知无线电等
    国强(1972- ),男,山东掖县人,博士,哈尔滨工程大学教授,主要研究方向为电子对抗、智能信号处理与识别
  • 基金资助:
    科技部战略性国际科技创新合作项目重点专项基金资助项目(2018YFE0206500);国家自然科学基金资助项目(61571250);浙江省自然科学基金资助项目(LY22F010018);宁波市江北区重大专项基金资助项目(201801A04)

Joint channel and impulsive noise estimation method for MIMO-OFDM systems

Xinrong LYU1, Youming LI2, Qiang GUO3   

  1. 1 College of Science &Technology, Ningbo University, Ningbo 315300, China
    2 Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211, China
    3 College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
  • Revised:2021-08-02 Online:2021-12-01 Published:2021-12-01
  • Supported by:
    The International Cooperation Project of the Ministry of Science and Technology(2018YFE0206500);The National Natural Science Foundation of China(61571250);The Natural Science Foundation of Zhejiang Province(LY22F010018);The Foundation of Ningbo Jiangbei District Science and Technology Bureau(201801A04)

摘要:

针对 MIMO-OFDM 系统中的脉冲噪声问题,提出了一种基于多测量向量压缩感知理论的信道与脉冲噪声联合估计方法。该方法将信道冲激响应和脉冲噪声联合组成一个具有行稀疏性的待估计矩阵,构建了一个基于全部子载波的多测量向量压缩感知模型。由于数据子载波中未知的发射符号导致观察矩阵的部分元素不确定,因此将发射符号视作未知参数,利用稀疏贝叶斯学习理论和期望最大值算法实现了一种能联合估计信道、脉冲噪声和发射符号的迭代方法。与现有方法相比,所提方法不仅能够充分利用全部子载波信息,而且不需要信道和脉冲噪声的先验统计信息。仿真结果表明,所提方法在信道估计及误比特率性能上有明显改善。

关键词: MIMO, OFDM, 信道估计, 脉冲噪声, 稀疏贝叶斯学习

Abstract:

Aiming at the impulsive noise occurring in MIMO-OFDM systems, a joint channel and impulsive noise estimation method based on the multiple measurement vector compressed sensing theory was proposed.The channel impulse response and the impulsive noise were combined to form a row sparse matrix to be estimated, and a multiple measurement vector compressed sensing model based on all subcarriers was constructed.As the measurement matrix was partially unknown due to the presence of unknown transmitted symbols in data tones, the multiple response sparse Bayesian learning theory and expectation maximization framework were adopted to jointly estimate the channel impulse response, the impulsive noise, and the data symbols which were regarded as unknown parameters.Compared with the existing methods, the proposed method not only utilizes all subcarriers but also does not use any a priori information of the channel and impulsive noise.The simulation results show that the proposed method achieves significant improvement on the channel estimation and bit error rate performance.

Key words: MIMO, OFDM, channel estimation, impulsive noise, sparse Bayesian learning

中图分类号: 

No Suggested Reading articles found!