[1] |
DWORK C , . Differential privacy[C]// Proceedings of 2006 International Colloquium on Automata,Languages and Programming (ICALP). Berlin:Springer, 2006: 1-12.
|
[2] |
DWORK C , MCSHERRY F , NISSIM K ,et al. Calibrating noise to sensitivity in private data analysis[C]// Theory of Cryptography. Berlin:Springer, 2006: 265-284.
|
[3] |
MCSHERRY F , TALWAR K . Mechanism design via differential privacy[C]// Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science. Piscataway:IEEE Press, 2007: 94-103.
|
[4] |
WANG T , ZHANG X F , FENG J Y ,et al. A comprehensive survey on local differential privacy toward data statistics and analysis[J]. Sensors, 2020,20(24): 7030.
|
[5] |
KAIROUZ P , OH S , VISWANATH P . Extremal mechanisms for local differential privacy[J]. Journal of Machine Learning Research, 2016,17(17): 1-51.
|
[6] |
KAIROUZ P , BONAWITZ K , RAMAGE D . Discrete distribution estimation under local privacy[C]// Proceedings of 2016 International Conference on Machine Learning (ICML). New York:ACM Press, 2016: 2436-2444.
|
[7] |
WANG T H , BLOCKI J , LI N H ,et al. Locally differentially private protocols for frequency estimation[C]// Proceedings of 2017 USENIX Security Symposium (USENIX Security). Berkeley:USENIX Association, 2017: 729-745.
|
[8] |
BASSILY R , SMITH A . Local,private,efficient protocols for succinct histograms[C]// Proceedings of the 47th Annual ACM Symposium on Theory of Computing. New York:ACM Press, 2015: 127-135.
|
[9] |
WANG T H , LI N H , JHA S . Locally differentially private frequent itemset mining[C]// Proceedings of 2018 IEEE Symposium on Security and Privacy. Piscataway:IEEE Press, 2018: 127-143.
|
[10] |
YE Q Q , HU H B , MENG X F ,et al. PrivKV:key-value data collection with local differential privacy[C]// Proceedings of 2019 IEEE Symposium on Security and Privacy. Piscataway:IEEE Press, 2019: 317-331.
|
[11] |
DUCHI J C , JORDAN M I , WAINWRIGHT M J . Privacy aware learning[J]. Journal of the ACM, 2014,61(6): 1-57.
|
[12] |
NGUYêN T T , XIAO X , YANG Y ,et al. Collecting and analyzing data from smart device users with local differential privacy[J]. arXiv Preprint,arXiv:1606.05053, 2016.
|
[13] |
YILMAZ E , AL-RUBAIE M , CHANG J M . Locally differentially private naive bayes classification[J]. arXiv Preprint,arXiv:1905.01039, 2019.
|
[14] |
MAHAWAGA A P C , BERTOK P , KHALIL I ,et al. Local differential privacy for deep learning[J]. IEEE Internet of Things Journal, 2020,7(7): 5827-5842.
|
[15] |
SHIN H , KIM S , SHIN J ,et al. Privacy enhanced matrix factorization for recommendation with local differential privacy[J]. IEEE Transactions on Knowledge and Data Engineering, 2018,30(9): 1770-1782.
|
[16] |
ERLINGSSON ú , PIHUR V , KOROLOVA A . RAPPOR:randomized aggregatable privacy-preserving ordinal response[C]// Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM Press, 2014: 1054-1067.
|
[17] |
WANG N , XIAO X K , YANG Y ,et al. Collecting and analyzing multidimensional data with local differential privacy[C]// Proceedings of 2019 IEEE 35th International Conference on Data Engineering. Piscataway:IEEE Press, 2019: 638-649.
|
[18] |
ZHAO Y , ZHAO J , YANG M ,et al. Local differential privacy-based federated learning for Internet of things[J]. IEEE Internet of Things Journal, 2021,8(11): 8836-8853.
|
[19] |
CHEN R , LI H R , QIN A K ,et al. Private spatial data aggregation in the local setting[C]// Proceedings of 2016 IEEE 32nd International Conference on Data Engineering. Piscataway:IEEE Press, 2016: 289-300.
|
[20] |
NIE Y W , YANG W , HUANG L S ,et al. A utility-optimized framework for personalized private histogram estimation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019,31(4): 655-669.
|
[21] |
XIA C , HUA J Y , TONG W ,et al. Distributed k-means clustering guaranteeing local differential privacy[J]. Computers & Security, 2020,90:101699.
|
[22] |
SHEN Z X , XIA Z H , YU P P . PLDP:personalized local differential privacy for multidimensional data aggregation[J]. Security and Communication Networks,2021, 2021:6684179.
|
[23] |
NALDI M , D’ACQUISTO G , . Differential privacy:an estimation theory-based method for choosing epsilon[J]. arXiv Preprint,arXiv:1510.00917, 2015.
|
[24] |
SHAHANI S , ABRAHAM J , VENKATESWARAN R . Selection and verification of privacy parameters for local differentially private data aggregation[C]// Proceedings of the 5th International Conference on Information System and Data Mining. New York:ACM Press, 2021: 84-89.
|
[25] |
LI F H , LI H , NIU B ,et al. Privacy computing:concept,computing framework,and future development trends[J]. Engineering, 2019,5(6): 1179-1192.
|
[26] |
叶青青, 孟小峰, 朱敏杰 ,等. 本地化差分隐私研究综述[J]. 软件学报, 2018,29(7): 1981-2005.
|
|
YE Q Q , MENG X F , ZHU M J ,et al. Survey on local differential privacy[J]. Journal of Software, 2018,29(7): 1981-2005.
|
[27] |
NIU B , LI Q H , WANG H Y ,et al. A framework for personalized location privacy[J]. IEEE Transactions on Mobile Computing,2021:doi.org/10.1109/TMC.2021.3055865.
|