[1] |
ZHAO J , XIE X J , XU X ,et al. Multi-view learning overview:recent progress and new challenges[J]. Information Fusion, 2017,38: 43-54.
|
[2] |
CHAO G Q , SUN S L , BI J B . A survey on multi-view clustering[J]. IEEE Transactions on Artificial Intelligence, 2021,2(2): 146-168.
|
[3] |
KANG Z , LIN Z , ZHU X ,et al. Structured graph learning for scalable subspace clustering:from single view to multiview[J]. IEEE Transactions on Cybernetics,2021:doi.org/ 10.1109/TCYB.2021.3061660.
|
[4] |
HUANG A P , CHEN W L , ZHAO T S ,et al. Joint learning of latent similarity and local embedding for multi-view clustering[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2021,30: 6772-6784.
|
[5] |
HUANG Z M , REN Y Z , PU X R ,et al. Dual self-paced multi-view clustering[J]. Neural Networks, 2021,140: 184-192.
|
[6] |
TAO Z Q , LIU H F , LI S ,et al. Marginalized multiview ensemble clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020,31(2): 600-611.
|
[7] |
GAO Q X , XIA W , WAN Z Z ,et al. Tensor-SVD based graph learning for multi-view subspace clustering[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2020: 3930-3937.
|
[8] |
李骜, 王卓, 于晓洋 ,等. 多核低冗余表示学习的稳健多视图子空间聚类方法[J]. 通信学报, 2021,42(11): 193-204.
|
|
LI A , WANG Z , YU X Y ,et al. Robust multiview subspace clustering method based on multi-kernel low-redundancy representation learning[J]. Journal on Communications, 2021,42(11): 193-204.
|
[9] |
NIE F , LI J , LI X . Parameter-free auto-weighted multiple graph learning:a framework for multiview clustering and semi-supervised classification[C]// Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.[S.l.:s.n.], 2016: 1881-1887.
|
[10] |
NIE F P , LI J , LI X L . Self-weighted multiview clustering with multiple graphs[C]// Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence.[S.l.:s.n.], 2017: 2564-2570.
|
[11] |
LIANG Y W , HUANG D , WANG C D . Consistency meets inconsistency:a unified graph learning framework for multi-view clustering[C]// Proceedings of 2019 IEEE International Conference on Data Mining. Piscataway:IEEE Press, 2019: 1204-1209.
|
[12] |
WANG H , YANG Y , LIU B . GMC:graph-based multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2020,32(6): 1116-1129.
|
[13] |
LIU J L , WANG C , GAO J ,et al. Multi-view clustering via joint nonnegative matrix factorization[C]// Proceedings of the 2013 SIAM International Conference on Data Mining. Philadelphia:Society for Industrial and Applied Mathematics, 2013: 252-260.
|
[14] |
张祎, 孔祥维, 王振帆 ,等. 基于多视图矩阵分解的聚类分析[J]. 自动化学报, 2018,44(12): 2160-2169.
|
|
ZHANG Y , KONG X W , WANG Z F ,et al. Matrix factorization for multi-view clustering[J]. Acta Automatica Sinica, 2018,44(12): 2160-2169.
|
[15] |
ZHANG C Q , FU H Z , LIU S ,et al. Low-rank tensor constrained multiview subspace clustering[C]// Proceedings of 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2015: 1582-1590.
|
[16] |
WU J L , LIN Z C , ZHA H B . Essential tensor learning for multi-view spectral clustering[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2019,28(12): 5910-5922.
|
[17] |
HUANG Z Y , HU P , ZHOU J T ,et al. Partially view-aligned clustering[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems.New York:Curran Associates Inc. , 2020: 2892-2902.
|
[18] |
YANG M X , LI Y F , HUANG Z Y ,et al. Partially view-aligned representation learning with noise-robust contrastive loss[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2021: 1134-1143.
|
[19] |
CUI H , ZHANG J J , CUI C F ,et al. Solving large-scale assignment problems by Kuhn-Munkres algorithm[C]// Proceedings of the 2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2016). Paris:Atlantis Press, 2016: 822-827.
|
[20] |
COLSON B , MARCOTTE P , SAVARD G . An overview of bilevel optimization[J]. Annals of Operations Research, 2007,153(1): 235-256.
|
[21] |
KANG P P , LIN Z H , YANG Z G ,et al. Intra-class low-rank regularization for supervised and semi-supervised cross-modal retrieval[J]. Applied Intelligence, 2022,52(1): 33-54.
|
[22] |
ZHANG D L , WU X J . Robust and discrete matrix factorization hashing for cross-modal retrieval[J]. Pattern Recognition, 2022,122:108343.
|