通信学报 ›› 2022, Vol. 43 ›› Issue (10): 196-209.doi: 10.11959/j.issn.1000-436x.2022158
肖振宇1, 刘珂1, 朱立鹏2
修回日期:
2022-06-21
出版日期:
2022-10-25
发布日期:
2022-10-01
作者简介:
肖振宇(1983− ),男,湖北天门人,博士,北京航空航天大学教授、博士生导师,主要研究方向为毫米波通信、阵列信号处理、空基通信网络、空天地一体化网络等基金资助:
Zhenyu XIAO1, Ke LIU1, Lipeng ZHU2
Revised:
2022-06-21
Online:
2022-10-25
Published:
2022-10-01
Supported by:
摘要:
摘 要:随着无人机应用范围的扩大和所承担任务的多样化,机间通信对于大带宽、高数据率、抗干扰能力的需求快速增长,具有丰富频谱资源的毫米波阵列通信成为支持机间宽带安全通信的关键技术之一。围绕机间毫米波阵列通信这一新兴领域,以点对点通信和无人机自组网为核心分析了机间毫米波阵列通信的研究难点和挑战,对机间点对点通信中信道建模、稳健性波束成形、安全通信以及无人机自组网中邻居发现、路由决策、资源分配、分布式部署的问题和方法进行综述,并总结了有价值的研究方向,为未来相关研究提供启发。
中图分类号:
肖振宇, 刘珂, 朱立鹏. 无人机机间毫米波阵列通信技术[J]. 通信学报, 2022, 43(10): 196-209.
Zhenyu XIAO, Ke LIU, Lipeng ZHU. Millimeter-wave array enabled UAV-to-UAV communication technology[J]. Journal on Communications, 2022, 43(10): 196-209.
表1
无人机机间毫米波阵列通信面临的问题与挑战"
机间通信类型 | 应用需求 | 主要挑战 | 毫米波阵列的技术支持 |
无人机点对点通信 | 信道建模 | 收发无人机位置与姿态快速变化,信道指向角快速变化,多普勒效应严重;现有的空对地通信信道模型并不适用于无人机机间通信 | 毫米波信号在角度域离散、动态波束追踪 |
稳健性波束成形 | 高指向性毫米波对于角度偏差敏感,需要快速波束追踪实时获取信道状态信息,无人机高速运动平台在毫米波频段多普勒频移严重 | 低复杂度稳健性波束成形、自适应波束追踪、局部空间高增益波束 | |
安全通信 | 无线传输具有开放性和广播性,容易泄露信息 | 为跳频、扩频技术提供更多选择、三维波束成形为安全通信提供空域自由度 | |
无人机自组网 | 邻居发现 | 三维全空域邻居发现;频繁波束追踪;广播信号传播范围有限且隐蔽性较差 | 高指向性波束、任意波束宽度灵活波束成形、动态波束追踪 |
路由决策 | 节点移动速度快、网络拓扑结构变化快;高数据流量需求;低时延需求;与资源分配相耦合 | 指向性波束增加传输距离、减少路由建立时间、减少数据包碰撞 | |
资源分配 | 对空域、时域、频域、功率资源的高效分配;资源冲突和资源竞争问题;与分布式部署相耦合 | 毫米波波段频谱资源分配、空间复用与波束追踪、灵活功率分配 | |
分布式部署 | 与资源分配相耦合,多变量非凸问题难以求解;毫米波覆盖范围有限;波束调度任务复杂 | 动态全空域波束追踪、波束移交 |
表3
无人机机间毫米波阵列通信稳健性波束成形方法的研究结果"
研究内容 | 文献 | 主要贡献 | 优缺点 |
波束追踪 | 文献[ | 利用高斯过程机器学习算法预测无人机的位置和姿态, | 优点:预测准确度高、频谱效率高,适用于高动态无人 |
估计信号的AoA和AoD,进而进行波束追踪 | 机自组网 | ||
缺点:没有讨论时间效率 | |||
文献[ | 提出了基于Q学习的波束追踪算法 | 优点:可以在多无人机高动态环境中实现平稳追踪 | |
缺点:可能需要极大的训练开销 | |||
文献[ | 基于机器学习的预测波束成形方案解决由无人机抖动引 | 优点:无人机和终端提前准备波束并快速建立和维持通 | |
起的波束失准 | 信链路 | ||
缺点:抖动只存在于发射端无人机 | |||
多普勒 | 文献[ | 根据历史估计结果优化估计过程,实现准确、低复杂度 | 优点:能够实现快速准确的多普勒频移补偿 |
频移补偿 | 的多普勒频移估计,进而进行有效的多普勒频移补偿 | 缺点:信道模型采用统计模型 |
表4
4种路由协议的工作模式和特点"
协议类型 | 文献 | 工作模式 | 特点 |
基于拓扑路由 | 文献[ | 根据整个网络的拓扑信息在数据包发送前确定从源节点到目的节点的传输路径 | 路由发现数据包在整个网络中散播,路由表定期更新,对带宽、可扩展性、存储功能要求较高,开销大 |
基于位置路由 | 文献[ | 利用每个节点已知的自身位置信息和当前邻居节点的位置信息确定传输路径 | 不需要全局网络信息,只需要源节点、邻居节点和目的节点的位置信息,能耗低、开销小,计算时间短,可扩展性强 |
混合路由 | 文献[ | 当数据无法通过基于拓扑的路由到达目的节点时,采用基于位置路由将数据转发给离目的节点最近的邻居节点,直至数据到达目的节点 | 能够在快速移动场景下实现更高的数据包传送率,适用于无人机自组网 |
仿生路由 | 文献[ | 模仿自然界生物群体的规律和动态,将路由发现过程模拟为蜂群采蜜或蚁群觅食等过程 | 适应性和自组织能力强,能有效应对网络拓扑结构的快速变化并调整路由,适用于大型网络 |
[1] | ZHANG H L , SONG L Y , HAN Z ,et al. Cooperation techniques for a cellular Internet of unmanned aerial vehicles[J]. IEEE Wireless Communications, 2019,26(5): 167-173. |
[2] | ZHANG C Y , ZHANG W Z , WANG W ,et al. Research challenges and opportunities of UAV millimeter-wave communications[J]. IEEE Wireless Communications, 2019,26(1): 58-62. |
[3] | 徐磊, 周藜莎, 李仁俊 ,等. 毫米波波束编码技术在无人机智能集群中的应用[J]. 航空学报, 2020,41(S1): 723754. |
XU L , ZHOU L S , LI R J ,et al. Application of millimeter wave beam coding technology in UAV intelligent swarm[J]. Acta Aeronautica et Astronautica Sinica, 2020,41(S1): 723754. | |
[4] | 詹文浩, 戴国华, 王朝晖 . 高频段频谱现状与技术分析[J]. 移动通信, 2016,40(3): 7-12. |
ZHAN W H , DAI G H , WANG Z H . Status of high frequency spectrum and technical analysis[J]. Mobile Communications, 2016,40(3): 7-12. | |
[5] | 郑婷婷 . 面向高速移动平台的毫米波波束成形与波束追踪技术研究[D]. 北京:北京邮电大学, 2018. |
ZHENG T T . Millimeter wave beamforming and beam tracking for high speed mobile platforms[D]. Beijing:Beijing University of Posts and Telecommunications, 2018. | |
[6] | 于大群, 孙磊, 林维涛 ,等. 一种用于5G移动通信的毫米波大规模天线系统[J]. 微波学报, 2021,37(1): 7-13. |
YU D Q , SUN L , LIN W T ,et al. A millimeter-wave massive MIMO antenna system for 5G mobile communication[J]. Journal of Microwaves, 2021,37(1): 7-13. | |
[7] | MA W Y , QI C H , LI G Y . High-resolution channel estimation for frequency-selective mmWave massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2020,19(5): 3517-3529. |
[8] | MA W Y , QI C H , ZHANG Z C ,et al. Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO[J]. IEEE Transactions on Communications, 2020,68(5): 2838-2849. |
[9] | 高杨, 李东生, 柳向 . 无人机集群协同态势觉察一致性评估[J]. 电子学报, 2019,47(1): 190-196. |
GAO Y , LI D S , LIU X . UAV swarm cooperative situation perception consensus evaluation[J]. Acta Electronica Sinica, 2019,47(1): 190-196. | |
[10] | LIU J J , SHI Y P , FADLULLAH Z M ,et al. Space-air-ground integrated network:a survey[J]. IEEE Communications Surveys & Tutorials, 2018,20(4): 2714-2741. |
[11] | 王祥科, 刘志宏, 丛一睿 ,等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020,41(4): 023732. |
WANG X K , LIU Z H , CONG Y R ,et al. Miniature fixed-wing UAV swarms:review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020,41(4): 023732. | |
[12] | 王长龙, 袁全盛, 胡永江 . 无人机通信安全中的三维波束成形技术[J]. 航空兵器, 2021,28(1): 39-44. |
WANG C L , YUAN Q S , HU Y J . 3D beamforming for security of UAV communications[J]. Aero Weaponry, 2021,28(1): 39-44. | |
[13] | JIANG H , ZHANG Z C , WANG C X ,et al. A novel 3D UAV channel model for A2G communication environments using AoD and AoA estimation algorithms[J]. IEEE Transactions on Communications, 2020,68(11): 7232-7246. |
[14] | CAI X S , IZYDORCZYK T , RODRíGUEZ-PI?EIRO J , ,et al. Empirical low-altitude air-to-ground spatial channel characterization for cellular networks connectivity[J]. IEEE Journal on Selected Areas in Communications, 2021,39(10): 2975-2991. |
[15] | YANG L , ZHANG W . Beam tracking and optimization for UAV communications[J]. IEEE Transactions on Wireless Communications, 2019,18(11): 5367-5379. |
[16] | 朱秋明, 华博宇, 毛开 ,等. 无人机毫米波信道建模进展和挑战[J]. 数据采集与处理, 2020,35(6): 1049-1059. |
ZHU Q M , HUA B Y , MAO K ,et al. Advances and challenges of UAV millimeter-wave channel modeling[J]. Journal of Data Acquisition and Processing, 2020,35(6): 1049-1059. | |
[17] | RAPPAPORT T S , MACCARTNEY G R , SAMIMI M K ,et al. Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design[J]. IEEE Transactions on Communications, 2015,63(9): 3029-3056. |
[18] | ZHANG J L , XU W J , GAO H ,et al. Position-attitude prediction based beam tracking for UAV mmWave communications[C]// Proceedings of ICC 2019-2019 IEEE International Conference on Communications. Piscataway:IEEE Press, 2019: 1-7. |
[19] | KE Y N , GAO H , XU W J ,et al. Position prediction based fast beam tracking scheme for multi-user UAV-mmWave communications[C]// Proceedings of 2019 IEEE International Conference on Communications. Piscataway:IEEE Press, 2019: 1-7. |
[20] | BAI L , HUANG Z W , ZHANG X ,et al. A non-stationary 3D model for 6G massive MIMO mmWave UAV channels[J]. IEEE Transactions on Wireless Communications, 2022,21(6): 4325-4339. |
[21] | MA Z F , AI B , HE R S ,et al. Three-dimensional modeling of millimeter-wave MIMO channels for UAV-based communications[C]// Proceedings of 2020 IEEE Global Communications Conference. Piscataway:IEEE Press, 2020: 1-6. |
[22] | RODRíGUEZ-FERNáNDEZ J , GONZáLEZ-PRELCIC N , PAMPLONA-TRINDADE I ,et al. Position-aided compressive channel estimation and tracking for millimeter wave multi-user MIMO air-to-ground communications[C]// Proceedings of 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications. Piscataway:IEEE Press, 2019: 1-5. |
[23] | DONG P H , ZHANG H , LI G Y ,et al. Deep CNN-based channel estimation for mmWave massive MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2019,13(5): 989-1000. |
[24] | WU Y , GU Y T , WANG Z C . Efficient channel estimation for mmWave MIMO with transceiver hardware impairments[J]. IEEE Transactions on Vehicular Technology, 2019,68(10): 9883-9895. |
[25] | ZHANG D Y , LI A , SHIRVANIMOGHADDAM M ,et al. Codebook-based training beam sequence design for millimeter-wave tracking systems[J]. IEEE Transactions on Wireless Communications, 2019,18(11): 5333-5349. |
[26] | NOH S , ZOLTOWSKI M D , LOVE D J . Multi-resolution codebook and adaptive beamforming sequence design for millimeter wave beam alignment[J]. IEEE Transactions on Wireless Communications, 2017,16(9): 5689-5701. |
[27] | KIM J , SCHMIEDER M , PETER M ,et al. A comprehensive study on mmWave-based mobile hotspot network system for high-speed train communications[J]. IEEE Transactions on Vehicular Technology, 2019,68(3): 2087-2101. |
[28] | XU W J , KE Y N , LEE C H ,et al. Data-driven beam management with angular domain information for mmWave UAV networks[J]. IEEE Transactions on Wireless Communications, 2021,20(11): 7040-7056. |
[29] | CHIANG H L , CHEN K C , RAVE W ,et al. Machine-learning beam tracking and weight optimization for mmWave multi-UAV links[J]. IEEE Transactions on Wireless Communications, 2021,20(8): 5481-5494. |
[30] | YUAN W J , LIU C , LIU F ,et al. Learning-based predictive beamforming for UAV communications with jittering[J]. IEEE Wireless Communications Letters, 2020,9(11): 1970-1974. |
[31] | ZHANG Q X , SUN H Q , FENG Z Y ,et al. Data-aided Doppler frequency shift estimation and compensation for UAVs[J]. IEEE Internet of Things Journal, 2020,7(1): 400-415. |
[32] | CHEN X Y , YANG Z T , ZHAO N ,et al. Secure transmission via power allocation in NOMA-UAV networks with circular trajectory[J]. IEEE Transactions on Vehicular Technology, 2020,69(9): 10033-10045. |
[33] | WANG Q , CHEN Z , LI H . Energy-efficient trajectory planning for UAV-aided secure communication[J]. China Communications, 2018,15(5): 51-60. |
[34] | DUO B , LUO J S , LI Y L ,et al. Joint trajectory and power optimization for securing UAV communications against active eavesdropping[J]. China Communications, 2021,18(1): 88-99. |
[35] | LI S X , DUO B , RENZO M D ,et al. Robust secure UAV communications with the aid of reconfigurable intelligent surfaces[J]. IEEE Transactions on Wireless Communications, 2021,20(10): 6402-6417. |
[36] | SUN G E , LI N , TAO X F ,et al. Power allocation in UAV-enabled relaying systems for secure communications[J]. IEEE Access, 2019,7: 119009-119017. |
[37] | CHENG F , GUI G , ZHAO N ,et al. UAV-relaying-assisted secure transmission with caching[J]. IEEE Transactions on Communications, 2019,67(5): 3140-3153. |
[38] | MUKHERJEE A , FAKOORIAN S A A , HUANG J ,et al. Principles of physical layer security in multiuser wireless networks:a survey[J]. IEEE Communications Surveys & Tutorials, 2014,16(3): 1550-1573. |
[39] | WU Q Q , MEI W D , ZHANG R . Safeguarding wireless network with UAVs:a physical layer security perspective[J]. IEEE Wireless Communications, 2019,26(5): 12-18. |
[40] | SUN X F , NG D W K , DING Z G ,et al. Physical layer security in UAV systems:challenges and opportunities[J]. IEEE Wireless Communications, 2019,26(5): 40-47. |
[41] | WU H C , WEN Y , ZHANG J Z ,et al. Energy-efficient and secure air-to-ground communication with jittering UAV[J]. IEEE Transactions on Vehicular Technology, 2020,69(4): 3954-3967. |
[42] | 邹玉龙, 姜晓, 严培舜 ,等. 下一代无人机群协同通信网络[J]. 南京邮电大学学报(自然科学版), 2017,37(3): 43-51. |
ZOU Y L , JIANG X , YAN P S ,et al. Next-generation unmanned aerial vehicle (UAV) cooperative communications[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2017,37(3): 43-51. | |
[43] | 徐俊 . 多无人机的组群飞行特性与控制分析[D]. 南京:南京理工大学, 2017. |
XU J . Group flight characteristics and control analysis of multiple UAVs[D]. Nanjing:Nanjing University of Science and Technology, 2017. | |
[44] | 段海滨, 邱华鑫, 陈琳 ,等. 无人机自主集群技术研究展望[J]. 科技导报, 2018,36(21): 90-98. |
DUAN H B , QIU H X , CHEN L ,et al. Prospects on unmanned aerial vehicle autonomous swarm technology[J]. Science & Technology Review, 2018,36(21): 90-98. | |
[45] | ZAFAR W , MUHAMMAD K B . Flying ad-hoc networks:technological and social implications[J]. IEEE Technology and Society Magazine, 2016,35(2): 67-74. |
[46] | 付有斌, 康巧燕, 王建峰 ,等. 无人机飞行自组网通信协议[J]. 指挥与控制学报, 2021,7(1): 89-96. |
FU Y B , KANG Q Y , WANG J F ,et al. Communication protocols for UAV flying ad-hoc network[J]. Journal of Command and Control, 2021,7(1): 89-96. | |
[47] | GUPTA L , JAIN R , VASZKUN G . Survey of important issues in UAV communication networks[J]. IEEE Communications Surveys & Tutorials, 2016,18(2): 1123-1152. |
[48] | WANG Z , PENG L X , XU R H ,et al. Neighbor discovery in three-dimensional mobile ad hoc networks with directional antennas[C]// Proceedings of 2016 25th Wireless and Optical Communication Conference (WOCC). Piscataway:IEEE Press, 2016: 1-5. |
[49] | LIU L J , PENG L X , XU R H ,et al. A neighbor discovery algorithm for flying ad hoc network using directional antennas[C]// Proceedings of 2019 28th Wireless and Optical Communications Conference (WOCC). Piscataway:IEEE Press, 2019: 1-5. |
[50] | CAI H , LIU B , GUI L ,et al. Neighbor discovery algorithms in wireless networks using directional antennas[C]// Proceedings of 2012 IEEE International Conference on Communications. Piscataway:IEEE Press, 2012: 767-772. |
[51] | SUN W , YANG Z , ZHANG X L ,et al. Energy-efficient neighbor discovery in mobile ad hoc and wireless sensor networks:a survey[J]. IEEE Communications Surveys & Tutorials, 2014,16(3): 1448-1459. |
[52] | WEI Z Q , LIU X Y , HAN C Y ,et al. Neighbor discovery for unmanned aerial vehicle networks[J]. IEEE Access, 2018,6: 68288-68301. |
[53] | YANG B , LIU M , LI Z C . Rendezvous on the fly:efficient neighbor discovery for autonomous UAVs[J]. IEEE Journal on Selected Areas in Communications, 2018,36(9): 2032-2044. |
[54] | WANG Y , MAO S W , RAPPAPORT T S . On directional neighbor discovery in mmWave networks[C]// Proceedings of 2017 IEEE 37th International Conference on Distributed Computing Systems. Piscataway:IEEE Press, 2017: 1704-1713. |
[55] | YAN L , DING H C , ZHANG L ,et al. Machine learning-based handovers for sub-6 GHz and mmWave integrated vehicular networks[J]. IEEE Transactions on Wireless Communications, 2019,18(10): 4873-4885. |
[56] | DAI H N , NG K W , LI M L ,et al. An overview of using directional antennas in wireless networks[J]. International Journal of Communication Systems, 2013,26(4): 413-448. |
[57] | OUBBATI O S , ATIQUZZAMAN M , LORENZ P ,et al. Routing in flying ad hoc networks:survey,constraints,and future challenge perspectives[J]. IEEE Access, 2019,7: 81057-81105. |
[58] | WANG J J , JIANG C X , HAN Z ,et al. Taking the drones to the next level:cooperative distributed unmanned-aerial-vehicular networks for small and mini drones[J]. IEEE Vehicular Technology Magazine, 2017,12(3): 73-82. |
[59] | SHUMEYE L D , SAAD U , DAO N-N ,et al. Routing in flying ad hoc networks:a comprehensive survey[J]. IEEE Communications Surveys& Tutorials, 2020,22(2): 1071-1120. |
[60] | 李盼 . 三维场景无人机自组网路由协议研究[D]. 北京:北京邮电大学, 2021. |
LI P . Research on routing protocol for 3D UAV adhoc network[D]. Beijing:Beijing University of Posts and Telecommunications, 2021. | |
[61] | SHIN J , BAEK Y , SON S H . Fundamental topology-based routing protocols for autonomous vehicles[C]// Proceedings of 2016 IEEE 22nd International Conference on Embedded and Real-Time Computing Systems and Applications. Piscataway:IEEE Press, 2016: 265-265. |
[62] | BAYAD K , BOURHIM E H , RZIZA M ,et al. Comparative study of topology-based routing protocols in vehicular ad hoc network using IEEE802.11p[C]// Proceedings of 2016 International Conference on Electrical and Information Technologies (ICEIT). Piscataway:IEEE Press, 2016: 526-530. |
[63] | POPESCU A M , TUDORACHE I G , PENG B ,et al. Surveying position based routing protocols for wireless sensor and ad-hoc networks[J]. International Journal of Communication Networks and Information Security (IJCNIS), 2012,4(1): 41. |
[64] | LIN L , SUN Q , LI J ,et al. A novel geographic position mobility oriented routing strategy for UAVs[J]. Journal of Computational Information Systems, 2012,8(2): 709-716. |
[65] | LI Y , ST-HILAIRE M , KUNZ T . Enhancements to reduce the overhead of the reactive-greedy-reactive routing protocol for unmanned aeronautical ad-hoc networks[C]// Proceedings of 2012 8th International Conference on Wireless Communications,Networking and Mobile Computing. Piscataway:IEEE Press, 2012: 1-4. |
[66] | MEDJO M B J D , KUNZ T , ST-HILAIRE M , ,et al. Unmanned aerial ad hoc networks:simulation-based evaluation of entity mobility models-impact on routing performance[J]. Aerospace, 2015,2(3): 392-422. |
[67] | BITAM S , MELLOUK A , ZEADALLY S . Bio-inspired routing algorithms survey for vehicular ad hoc networks[J]. IEEE Communications Surveys & Tutorials, 2015,17(2): 843-867. |
[68] | ZHAO B Z , DING Q . Route discovery in flying ad-hoc network based on bee colony algorithm[C]// Proceedings of 2019 IEEE International Conference on Artificial Intelligence and Computer Applications. Piscataway:IEEE Press, 2019: 364-368. |
[69] | LEONOV A V , . Modeling of bio-inspired algorithms AntHocNet and BeeAdHoc for flying ad hoc networks (FANETS)[C]// Proceedings of 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering. Piscataway:IEEE Press, 2016: 90-99. |
[70] | YU Y L , RU L , CHI W S ,et al. Ant colony optimization based polymorphism-aware routing algorithm for ad hoc UAV network[J]. Multimedia Tools and Applications, 2016,75(22): 14451-14476. |
[71] | EL-SHERIF A A , MOHAMED A . Joint routing and resource allocation for delay minimization in cognitive radio based mesh networks[J]. IEEE Transactions on Wireless Communications, 2014,13(1): 186-197. |
[72] | WEERADDANA P C , CODREANU M , LATVA-AHO M , ,et al. Resource allocation for cross-layer utility maximization in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2011,60(6): 2790-2809. |
[73] | NIU Y , GAO C H , LI Y ,et al. Boosting spatial reuse via multiple-path multihop scheduling for directional mmWave WPANs[J]. IEEE Transactions on Vehicular Technology, 2016,65(8): 6614-6627. |
[74] | CHANG W , WU C W , LIN Y X . Efficient time-slot adjustment and packet-scheduling algorithm for full-duplex multi-hop relay-assisted mmWave networks[J]. IEEE Access, 2018,6: 39273-39286. |
[75] | WANG H C , WANG J L , DING G R ,et al. Spectrum sharing planning for full-duplex UAV relaying systems with underlaid D2D communications[J]. IEEE Journal on Selected Areas in Communications, 2018,36(9): 1986-1999. |
[76] | FENG Z Y , JI L , ZHANG Q X ,et al. Spectrum management for mmWave enabled UAV swarm networks:Challenges and opportunities[J]. IEEE Communications Magazine, 2019,57(1): 146-153. |
[77] | SEID A M , BOATENG G O , ANOKYE S ,et al. Collaborative computation offloading and resource allocation in multi-UAV-assisted IoT networks:a deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2021,8(15): 12203-12218. |
[78] | WU X Z , TAVILDAR S , SHAKKOTTAI S ,et al. FlashLinQ:a synchronous distributed scheduler for peer-to-peer ad hoc networks[J]. IEEE/ACM Transactions on Networking, 2013,21(4): 1215-1228. |
[79] | SHEN K M , YU W . FPLinQ:a cooperative spectrum sharing strategy for device-to-device communications[C]// Proceedings of 2017 IEEE International Symposium on Information Theory. Piscataway:IEEE Press, 2017: 2323-2327. |
[80] | QIAN L P , ZHANG Y J . S-MAPEL:monotonic optimization for non-convex joint power control and scheduling problems[J]. IEEE Transactions on Wireless Communications, 2010,9(5): 1708-1719. |
[81] | JOHANSSON M , XIAO L . Cross-layer optimization of wireless networks using nonlinear column generation[J]. IEEE Transactions on Wireless Communications, 2006,5(2): 435-445. |
[82] | CUI W , SHEN K M , YU W . Spatial deep learning for wireless scheduling[J]. IEEE Journal on Selected Areas in Communications, 2019,37(6): 1248-1261. |
[83] | WADU M M , SAMARAKOON S , BENNIS M . Federated learning under channel uncertainty:joint client scheduling and resource allocation[C]// Proceedings of 2020 IEEE Wireless Communications and Networking Conference. Piscataway:IEEE Press, 2020: 1-6. |
[84] | CHEN Q B . Joint position and resource optimization for multi-UAV-aided relaying systems[J]. IEEE Access, 2020,8: 10403-10415. |
[85] | YOU W J , DONG C , WU Q H ,et al. Joint task scheduling,resource allocation,and UAV trajectory under clustering for FANETs[J]. China Communications, 2022,19(1): 104-118. |
[1] | 李中捷, 熊吉源, 高伟, 韦金迎. 分布式IRS辅助毫米波MU-MISO系统联合波束成形设计[J]. 通信学报, 2022, 43(4): 216-226. |
[2] | 郎磊, 王荆宁, 王一, 赵子涛. 无人机辅助通信中基于用户轨迹的无线资源和航迹优化[J]. 通信学报, 2022, 43(3): 225-232. |
[3] | 李斌, 刘文帅, 谢万城, 费泽松. 智能反射面赋能无人机边缘网络计算卸载方案[J]. 通信学报, 2022, 43(10): 223-233. |
[4] | 孙长印, 刘李延, 江帆, 姜静. 基于DNN的Sub-6 GHz辅助毫米波网络功率分配算法[J]. 通信学报, 2021, 42(9): 184-193. |
[5] | 舒坚, 王启宁, 刘琳岚. 基于深度图嵌入的无人机自组网链路预测[J]. 通信学报, 2021, 42(7): 137-149. |
[6] | 张天魁,陈超,王子端,杨鼎成. 无人机辅助蜂窝网络中的无人机与用户协同缓存算法[J]. 通信学报, 2020, 41(9): 130-138. |
[7] | 吴启晖,吴伟. 无人机辅助边缘计算的能量效率最大化算法设计[J]. 通信学报, 2020, 41(10): 15-24. |
[8] | 王一兵,牛勇,丁玮光,吴昊. 基于冲突图的毫米波无线个域网并行调度方案[J]. 通信学报, 2019, 40(1): 34-42. |
[9] | 周杰,邱琳,菊池久和. 基于电磁矢量传感器的MIMO天线阵列系统研究[J]. 通信学报, 2013, 34(5): 1-11. |
[10] | 周杰1,2,邱琳1,菊池久和2. 基于电磁矢量传感器的MIMO多天线阵列系统研究[J]. 通信学报, 2013, 34(5): 1-11. |
[11] | 胡兵,李平安,俞卞章. 基于改进广义Steiner估计的MC-CDMA系统空时多用户检测[J]. 通信学报, 2005, 26(4): 56-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|