[1] |
LIU G Y , HUANG Y H , LI N ,et al. Vision,requirements and network architecture of 6G mobile network beyond 2030[J]. China Communications, 2020,17(9): 92-104.
|
[2] |
迟楠, 陈慧 . 高速可见光通信的前沿研究进展[J]. 光电工程, 2020,47(3): 190687.
|
|
CHI N , CHEN H . Progress and prospect of high-speed visible light communication[J]. Opto-Electronic Engineering, 2020,47(3): 190687.
|
[3] |
DAI L L , WANG B C , YUAN Y F ,et al. Non-orthogonal multiple access for 5G:solutions,challenges,opportunities,and future research trends[J]. IEEE Communications Magazine, 2015,53(9): 74-81.
|
[4] |
JIANG W , HAN B , HABIBI M A ,et al. The road towards 6G:a comprehensive survey[J]. IEEE Open Journal of the Communications Society, 2021,2: 334-366.
|
[5] |
MA S , LI H , HE Y ,et al. Capacity bounds and interference management for interference channel in visible light communication networks[J]. IEEE Transactions on Wireless Communications, 2019,18(1): 182-193.
|
[6] |
JIANG R , WANG Q , HAAS H ,et al. Joint user association and power allocation for cell-free visible light communication networks[J]. IEEE Journal on Selected Areas in Communications, 2018,36(1): 136-148.
|
[7] |
SHI J Y , ZHU X , WANG F M ,et al. Net data rate of 14.6 Gbit/s underwater VLC utilizing silicon substrate common-anode five primary colors LED[C]// Proceedings of Optical Fiber Communication Conference. Washington:OSA, 2019: 1-3.
|
[8] |
YANG S H , JUNG E M , HAN S K . Indoor location estimation based on LED visible light communication using multiple optical receivers[J]. IEEE Communications Letters, 2013,17(9): 1834-1837.
|
[9] |
YANG S H , KIM H S , SON Y H ,et al. Three-dimensional visible light indoor localization using AOA and RSS with multiple optical receivers[J]. Journal of Lightwave Technology, 2014,32(14): 2480-2485.
|
[10] |
WU Y C , HSU K L , LIU Y ,et al. Using linear interpolation to reduce the training samples for regression based visible light positioning system[J]. IEEE Photonics Journal, 2020,12(2): 1-5.
|
[11] |
YANG H L , ZHONG W D , CHEN C ,et al. QoS-driven optimized design-based integrated visible light communication and positioning for indoor IoT networks[J]. IEEE Internet of Things Journal, 2020,7(1): 269-283.
|
[12] |
LIN B J , TANG X , GHASSEMLOOY Z ,et al. Experimental demonstration of an indoor VLC positioning system based on OFDMA[J]. IEEE Photonics Journal, 2017,9(2): 1-9.
|
[13] |
YANG H L , CHEN C , ZHONG W D ,et al. Demonstration of a quasi-gapless integrated visible light communication and positioning system[J]. IEEE Photonics Technology Letters, 2018,30(23): 2001-2004.
|
[14] |
YANG H L , DU P F , ZHONG W D ,et al. Reinforcement learning-based intelligent resource allocation for integrated VLCP systems[J]. IEEE Wireless Communications Letters, 2019,8(4): 1204-1207.
|
[15] |
WANG X M , ZHANG Y H , SHEN R J ,et al. DRL-based energy-efficient resource allocation frameworks for uplink NOMA systems[J]. IEEE Internet of Things Journal, 2020,7(8): 7279-7294.
|
[16] |
CHU M , LI H , LIAO X W ,et al. Reinforcement learning-based multiaccess control and battery prediction with energy harvesting in IoT systems[J]. IEEE Internet of Things Journal, 2019,6(2): 2009-2020.
|
[17] |
KAHN J M , BARRY J R . Wireless infrared communications[J]. Proceedings of the IEEE, 1997,85(2): 265-298.
|
[18] |
STEVENS N , STEENDAM H . Magnitude of the distance estimation bias in received signal strength visible light positioning[J]. IEEE Communications Letters, 2018,22(11): 2250-2253.
|
[19] |
KESKIN M F , SEZER A D , GEZICI S . Optimal and robust power allocation for visible light positioning systems under illumination constraints[J]. IEEE Transactions on Communications, 2019,67(1): 527-542.
|
[20] |
MA S , ZHANG F , LI H ,et al. Simultaneous lightwave information and power transfer in visible light communication systems[J]. IEEE Transactions on Wireless Communications, 2019,18(12): 5818-5830.
|
[21] |
周志华 . 机器学习[M]. 北京: 清华大学出版社, 2016.
|
|
ZHOU Z H . Machine learning[M]. Beijing: Tsinghua University Press, 2016.
|
[22] |
MNIH V , KAVUKCUOGLU K , SILVER D ,et al. Human-level control through deep reinforcement learning[J]. Nature, 2015,518(7540): 529-533.
|
[23] |
XU Y H , YANG C C , HUA M ,et al. Deep deterministic policy gradient (DDPG)-based resource allocation scheme for NOMA vehicular communications[J]. IEEE Access, 2020,8: 18797-18807.
|
[24] |
CALABRESE F D , WANG L , GHADIMI E ,et al. Learning radio resource management in RANs:framework,opportunities,and challenges[J]. IEEE Communications Magazine, 2018,56(9): 138-145.
|