[1] |
胡建伟, 车欣, 周漫 ,等. 基于高斯混合模型的增量聚类方法识别恶意软件家族[J]. 通信学报, 2019,40(6): 148-159.
|
|
HU J W , CHE X , ZHOU M ,et al. Incremental clustering method based on Gaussian mixture model to identify malware family[J]. Journal on Communications, 2019,40(6): 148-159.
|
[2] |
WANG S S , CHEN Z X , YAN Q B ,et al. Deep and broad URL feature mining for android malware detection[J]. Information Sciences, 2020,513: 600-613.
|
[3] |
ONWUZURIKE L , MARICONTI E , ANDRIOTIS P ,et al. MaMaDroid:detecting android malware by building Markov chains of behavioral models[J]. ACM Transactions on Privacy and Security, 2019,22(2): 1-34.
|
[4] |
刘奇旭, 王君楠, 尹捷 ,等. 对抗机器学习在网络入侵检测领域的应用[J]. 通信学报, 2021,42(11): 1-12.
|
|
LIU Q X , WANG J N , YIN J ,et al. Application of adversarial machine learning in network intrusion detection[J]. Journal on Communications, 2021,42(11): 1-12.
|
[5] |
李盼, 赵文涛, 刘强 ,等. 机器学习安全性问题及其防御技术研究综述[J]. 计算机科学与探索, 2018,12(2): 171-184.
|
|
LI P , ZHAO W T , LIU Q ,et al. Security issues and their countermeasuring techniques of machine learning:a survey[J]. Journal of Frontiers of Computer Science and Technology, 2018,12(2): 171-184.
|
[6] |
DEMETRIO L , COULL S E , BIGGIO B ,et al. Adversarial EXEmples:a survey and experimental evaluation of practical attacks on machine learning for windows malware detection[J]. ACM Transactions on Privacy and Security, 2021,24(4): 1-31.
|
[7] |
LI D Q , LI Q M , YE Y F ,et al. Arms race in adversarial malware detection:a survey[J]. ACM Computing Surveys, 2021,55(1): 1-35.
|
[8] |
MIRZAEIAN A , KOSECKA J , HOMAYOUN H ,et al. Diverse knowledge distillation (DKD):a solution for improving the robustness of ensemble models against adversarial attacks[C]// Proceedings of 2021 22nd International Symposium on Quality Electronic Design. Piscataway:IEEE Press, 2021: 319-324.
|
[9] |
KWON H , LEE J . Diversity adversarial training against adversarial attack on deep neural networks[J]. Symmetry, 2021,13(3): 428.
|
[10] |
WANG D R , LI C R , WEN S ,et al. Defending against adversarial attack towards deep neural networks via collaborative multi-task training[J]. IEEE Transactions on Dependable and Secure Computing, 2022,19(2): 953-965.
|
[11] |
LI D Q , LI Q M . Adversarial deep ensemble:evasion attacks and defenses for malware detection[J]. IEEE Transactions on Information Forensics and Security, 2020,15: 3886-3900.
|
[12] |
WANG J N , LIU Q X , LIU C G ,et al. GAN-based adversarial patch for malware C2 traffic to bypass DL detector[C]// Information and Communications Security. Berlin:Springer, 2021: 78-96.
|
[13] |
WANG C Y , ZHANG L L , ZHAO K ,et al. AdvAndMal:adversarial training for android malware detection and family classification[J]. Symmetry, 2021,13(6): 1081.
|
[14] |
GOODFELLOW I , POUGET-ABADIE J , MIRZA M ,et al. Generative adversarial networks[J]. Communications of the ACM, 2020,63(11): 139-144.
|
[15] |
KIM J Y , BU S J , CHO S B . Malware detection using deep transferred generative adversarial networks[C]// Neural Information Processing. Berlin:Springer, 2017: 556-564.
|
[16] |
KIM J Y , BU S J , CHO S B . Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders[J]. Information Sciences, 2018,460/461: 83-102.
|
[17] |
LIU Y H , LI J Q , LIU B X ,et al. Malware detection method based on image analysis and generative adversarial networks[J]. Concurrency and Computation:Practice and Experience,2022:doi.org/10.1002/cpe.7170.
|
[18] |
SUCIU O , COULL S E , JOHNS J . Exploring adversarial examples in malware detection[C]// Proceedings of 2019 IEEE Security and Privacy Workshops. Piscataway:IEEE Press, 2019: 8-14.
|
[19] |
HU W W , TAN Y . Generating adversarial malware examples for black-box attacks based on GAN[J]. arXiv Preprint,arXiv:1702.05983, 2017.
|
[20] |
王万良, 李卓蓉 . 生成式对抗网络研究进展[J]. 通信学报, 2018,39(2): 135-148.
|
|
WANG W L , LI Z R . Advances in generative adversarial network[J]. Journal on Communications, 2018,39(2): 135-148.
|
[21] |
唐川, 张义, 杨岳湘 ,等. DroidGAN:基于DCGAN的Android对抗样本生成框架[J]. 通信学报, 2018,39(S1): 64-69.
|
|
TANG C , ZHANG Y , YANG Y X ,et al. DroidGAN:Android adversarial sample generation framework based on DCGAN[J]. Journal on Communications, 2018,39(S1): 64-69.
|
[22] |
ARJOVSKY M , CHINTALA S , BOTTOU L . Wasserstein generative adversarial networks[C]// Proceedings of the 34th International Conference on Machine Learning.[S.l.]: JMLR.org, 2017: 214-223.
|