[1] |
YANG Q , LIU Y , CHEN T J ,et al. Federated machine learning:concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019,10(2): 1-19.
|
[2] |
KAIROUZ P , MCMAHAN H B , AVENT B ,et al. Advances and open problems in federated learning[J]. Foundations and Trends in Machine Learning, 2021,14(1-2): 1-210.
|
[3] |
方晨, 郭渊博, 王一丰 ,等. 基于区块链和联邦学习的边缘计算隐私保护方法[J]. 通信学报, 2021,42(11): 28-40.
|
|
FANG C , GUO Y B , WANG Y F ,et al. Edge computing privacy protection method based on blockchain and federated learning[J]. Journal on Communications, 2021,42(11): 28-40.
|
[4] |
莫梓嘉, 高志鹏, 杨杨 ,等. 面向车联网数据隐私保护的高效分布式模型共享策略[J]. 通信学报, 2022,43(4): 83-94.
|
|
MO Z J , GAO Z P , YANG Y ,et al. Efficient distributed model sharing strategy for data privacy protection in Internet of vehicles[J]. Journal on Communications, 2022,43(4): 83-94.
|
[5] |
刘艺璇, 陈红, 刘宇涵 ,等. 联邦学习中的隐私保护技术[J]. 软件学报, 2022,33(3): 1057-1092.
|
|
LIU Y X , CHEN H , LIU Y H ,et al. Privacy-preserving techniques in federated learning[J]. Journal of Software, 2022,33(3): 1057-1092.
|
[6] |
SONG M K , WANG Z B , ZHANG Z F ,et al. Analyzing user-level privacy attack against federated learning[J]. IEEE Journal on Selected Areas in Communications, 2020,38(10): 2430-2444.
|
[7] |
LIU X Y , LI H W , XU G W ,et al. Privacy-enhanced federated learning against poisoning adversaries[J]. IEEE Transactions on Information Forensics and Security, 2021,16: 4574-4588.
|
[8] |
PHONG L T , AONO Y , HAYASHI T ,et al. Privacy-preserving deep learning via additively homomorphic encryption[C]// Proceedings of IEEE Transactions on Information Forensics and Security. Piscataway:IEEE Press, 2019: 1333-1345.
|
[9] |
OU W , ZENG J , GUO Z ,et al. A homomor-phic-encryption-based vertical federated learning scheme for rick management[J]. Computer Science and Information Systems, 2020,17(3): 819-834.
|
[10] |
ZHU H F , MONG G R S , NG W K . Privacy-preserving weighted federated learning within the secret sharing framework[J]. IEEE Access, 2020,8: 198275-198284.
|
[11] |
DWORK C , . Differential privacy[C]// Proceedings of 2006 International Colloquium on Automata,Languages and Programming (ICALP). Berlin:Springer, 2006: 1-12.
|
[12] |
GEYER R C , KLEIN T , NABI M . Differentially private federated learning:a client level perspective[J]. arXiv Preprint,arXiv:1712.07557, 2017.
|
[13] |
ABADI M , CHU A , GOODFELLOW I ,et al. Deep learning with differential privacy[C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM Press, 2016: 308-318.
|
[14] |
ZHAO C X , SVN Y , WANG D G . Federated learning with Gaussian differential privacy[C]// Proceedings of the 2020 2nd International Conference on Robotics,Intelligent Control and Artificial Intelligence. Piscataway:IEEE Press, 2020: 296-301.
|
[15] |
WEI K , LI J , DING M ,et al. Federated learning with differential privacy:algorithms and performance analysis[J]. IEEE Transactions on Information Forensics and Security, 2020,15: 3454-3469.
|
[16] |
TRUEX S , LIU L , CHOW K H ,et al. LDP-Fed:federated learning with local differential privacy[C]// Proceedings of the Third ACM International Workshop on Edge Systems,Analytics and Networking. New York:ACM Press, 2020: 61-66.
|
[17] |
LIU R X , CAO Y , YOSHIKAWA M ,et al. FedSel:federated SGD under local differential privacy with top-k dimension selection[C]// International Conference on Database Systems for Advanced Applications. Berlin:Springer, 2020: 485-501.
|
[18] |
ZHAO Y , ZHAO J , YANG M M ,et al. Local differential privacy-based federated learning for Internet of things[J]. IEEE Internet of Things Journal, 2021,8(11): 8836-8853.
|
[19] |
MCMAHAN H B , MOORE E , RAMAGE D ,et al. Communication-efficient learning of deep networks from decentralized data[J]. arXiv Preprint,arXiv:1602.05629, 2016.
|