[1] |
SHOR P W . Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 1997,26(5): 1484-1509.
|
[2] |
MONTANARO A . Quantum algorithms:an overview[J]. NPJ Quantum Information, 2016,2(1): 1-8.
|
[3] |
ANSCHUETZ E , OLSON J , ASPURU-GUZIK A ,et al. Variational quantum factoring[C]// Quantum Technology and Optimization Problems. Berlin:Springer, 2019: 74-85.
|
[4] |
GYONGYOSI L , IMRE S . A survey on quantum computing technology[J]. Computer Science Review, 2019,31: 51-71.
|
[5] |
DALEY A J , BLOCH I , KOKAIL C ,et al. Practical quantum advantage in quantum simulation[J]. Nature, 2022,607(7920): 667-676.
|
[6] |
王丽萍, 戚艳红 . 基于编码的后量子公钥密码研究进展[J]. 信息安全学报, 2019,4(2): 20-28.
|
|
WANG L P , QI Y H . Recent progress of code-based post-quantum public key cryptography[J]. Journal of Cyber Security, 2019,4(2): 20-28.
|
[7] |
王小云, 刘明洁 . 格密码学研究[J]. 密码学报, 2014,1(1): 13-27.
|
|
WANG X Y , LIU M J . Survey of lattice-based cryptography[J]. Journal of Cryptologic Research, 2014,1(1): 13-27.
|
[8] |
ASIF R . Post-quantum cryptosystems for Internet-of-things:a survey on lattice-based algorithms[J]. IoT, 2021,2(1): 71-91.
|
[9] |
郁昱 . 后量子密码专栏序言[J]. 密码学报, 2017,4(5): 472-473.
|
|
YU Y . Preface to post-quantum cryptography column[J]. Journal of Cryptologic Research, 2017,4(5): 472-473.
|
[10] |
BERNSTEIN D J , BUCHMANN J , DAHMEN E . Post-quantum cryptography[M]. Berlin: Springer, 2009.
|
[11] |
MAZE G , MONICO C , ROSENTHAL J . A public key cryptosystem based on actions by semigroups[C]// Proceedings of the IEEE International Symposium on Information Theory. Piscataway:IEEE Press, 2004:266.
|
[12] |
MAZE G , MONICO C , ROSENTHAL J ,et al. Public key cryptography based on semigroup actions[J]. Advances in Mathematics of Communications, 2007,1(4): 489-507.
|
[13] |
HUANG H W , YANG B , ZHU S L ,et al. Generalized ElGamal public key cryptosystem based on a new Diffie-Hellman problem[C]// International Conference on Provable Security. Berlin:Springer, 2008: 1-21.
|
[14] |
CRAMER R , DAMGARD I , KILTZ E ,et al. DDH-like assumptions based on extension rings[C]// International Workshop on Public Key Cryptography. Berlin:Springer, 2012: 644-661.
|
[15] |
WANG L C , WANG L H , CAO Z F ,et al. Conjugate adjoining problem in braid groups and new design of braid-based signatures[J]. Science China Information Sciences, 2010,53(3): 524-536.
|
[16] |
CLIMENT J J , NAVARRO P R , TORTOSA L . An extension of the noncommutative Bergman’s ring with a large number of noninvertible elements[J]. Applicable Algebra in Engineering,Communication and Computing, 2014,25(5): 347-361.
|
[17] |
GRIGORIEV D , SHPILRAIN V . Tropical cryptography[J]. Communications in Algebra, 2014,42(6): 2624-2632.
|
[18] |
GRIGORIEV D , SHPILRAIN V . Tropical cryptography II:extensions by homomorphisms[J]. Communications in Algebra, 2019,47(10): 4224-4229.
|
[19] |
EKERT A , JOZSA R . Quantum computation and Shor’s factoring algorithm[J]. Reviews of Modern Physics, 1996,68(3): 733-753.
|
[20] |
JOZSA R . Quantum factoring,discrete logarithms,and the hidden subgroup problem[J]. Computing in Science & Engineering, 2001,3(2): 34-43.
|
[21] |
BONEH D , LIPTON R J . Quantum cryptanalysis of hidden linear functions[C]// Advances in Cryptology — CRYPT0’ 95. Berlin:Springer, 1995: 424-437.
|
[22] |
HALLGREN S . Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem[J]. Journal of the ACM, 2007,54(1): 1-19.
|
[23] |
AMBAINIS A , . New developments in quantum algorithms[C]// International Symposium on Mathematical Foundations of Computer Science. Berlin:Springer, 2010: 1-11.
|
[24] |
GONCALVES D N , FERNANDES T , COSME C . An efficient quantum algorithm for the hidden subgroup problem over some non-abelian groups[J]. Tema, 2017,18(2): 215-223.
|
[25] |
HORAN K , KAHROBAEI D . The hidden subgroup problem and post-quantum group-based cryptography[C]// International Congress on Mathematical Software. Berlin:Springer, 2018: 218-226.
|
[26] |
SUO J W , WANG L C , YANG S J ,et al. Quantum algorithms for typical hard problems:a perspective of cryptanalysis[J]. Quantum Information Processing, 2020,19(6): 178.
|
[27] |
BANIN M T , TSABAN B . A reduction of Semigroup DLP to classic DLP[J]. Designs,Codes and Cryptography, 2016,81(1): 75-82.
|
[28] |
HAN J , ZHUANG J C . DLP in semigroups:algorithms and lower bounds[J]. Journal of Mathematical Cryptology, 2022,16(1): 278-288.
|
[29] |
TINANI S , ROSENTHAL J . A deterministic algorithm for the discrete logarithm problem in a semigroup[J]. Journal of Mathematical Cryptology, 2022,16(1): 141-155.
|