通信学报 ›› 2023, Vol. 44 ›› Issue (4): 78-86.doi: 10.11959/j.issn.1000-436x.2023076

• 学术论文 • 上一篇    下一篇

面向多波束卫星系统的波束跳变与覆盖控制联合优化算法

许国良1,2, 谭峰1, 冉泳屹1,2, 陈丰1   

  1. 1 重庆邮电大学通信与信息工程学院,重庆 400065
    2 重庆邮电大学电子信息与网络工程研究院,重庆 400065
  • 修回日期:2023-02-01 出版日期:2023-04-25 发布日期:2023-04-01
  • 作者简介:许国良(1973- ),男,浙江金华人,博士,重庆邮电大学教授,主要研究方向为大数据信息挖掘、智能分析、传感检测、感知系统和传感网络等领域的新技术和应用
    谭峰(1998- ),男,重庆人,重庆邮电大学硕士生,主要研究方向为卫星通信、资源分配、路由算法等
    冉泳屹(1986- ),男,重庆人,重庆邮电大学讲师、硕士生导师,主要研究方向为深度强化学习、深度学习、随机优化等方法在计算机系统和通信网络的应用
    陈丰(1997- ),男,安徽池州人,重庆邮电大学硕士生,主要研究方向为卫星通信、路由算法等
  • 基金资助:
    国家自然科学基金资助项目(62171072);国家自然科学基金资助项目(62172064);国家自然科学基金资助项目(62003067);重庆市自然科学基金资助项目(cstc2021jcyj-msxmX0586)

Joint beam hopping and coverage control optimization algorithm for multibeam satellite system

Guoliang XU1,2, Feng TAN1, Yongyi RAN1,2, Feng CHEN1   

  1. 1 School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    2 Institute of Electronic Information and Network Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Revised:2023-02-01 Online:2023-04-25 Published:2023-04-01
  • Supported by:
    The National Natural Science Foundation of China(62171072);The National Natural Science Foundation of China(62172064);The National Natural Science Foundation of China(62003067);The Natural Science Foundation of Chongqing(cstc2021jcyj-msxmX0586)

摘要:

为了提升多波束卫星(MBS)系统的性能,提出了一种基于深度强化学习联合优化MBS的波束跳变和覆盖控制(BHCC)算法。首先,将多波束卫星中的资源分配问题转换为多目标优化问题,以最大化多波束卫星系统的系统吞吐量,最小化丢包率;其次,将多波束卫星环境表示为多维矩阵,并将目标问题建模为考虑随机通信需求的马尔可夫决策过程;最后,结合深度强化学习强大的特征提取能力和学习能力对目标问题进行求解。此外,提出了一种单智能体轮询复用机制以减少搜索空间,降低收敛难度,加速BHCC算法的训练。仿真结果表明,相对于遗传算法、贪婪算法及随机算法,BHCC算法不仅能提高MBS的吞吐量,而且能降低系统的丢包率;相对于不考虑自适应波束覆盖范围的深度强化学习算法,BHCC算法在不同通信场景下的性能更优异。

关键词: 多波束卫星, 深度强化学习, 波束跳变技术, 波束覆盖控制

Abstract:

To improve the performance of multibeam satellite (MBS) systems, a deep reinforcement learning-based algorithm to jointly optimize the beam hopping and coverage control (BHCC) algorithm for MBS was proposed.Firstly, the resource allocation problem in MBS was transformed to a multi-objective optimization problem with the objective maximizing the system throughput and minimizing the packet loss rate of the MBS.Secondly, the MBS environment was characterized as a multi-dimensional matrix, and the objective problem was modelled as a Markov decision process considering stochastic communication requirements.Finally, the objective problem was solved by combining the powerful feature extraction and learning capabilities of deep reinforcement learning.In addition, a single-intelligence polling multiplexing mechanism was proposed to reduce the search space and convergence difficulty and accelerate the training of BHCC.Compared with the genetic algorithm, the simulation results show that BHCC improves the throughput of MBS and reduces the packet loss rate of the system, greedy algorithm, and random algorithm.Besides, BHCC performs better in different communication scenarios compared with a deep reinforcement learning algorithm, which do not consider the adaptive beam coverage.

Key words: multibeam satellite, deep reinforcement learning, beam hopping technology, beam coverage control

中图分类号: 

No Suggested Reading articles found!