1 |
ALSHAMRANI A, MYNENI S, CHOWDHARY A, et al. A survey on advanced persistent threats: techniques, solutions, challenges, and research opportunities[J]. IEEE Communications Surveys & Tutorials, 2019, 21(2): 1851-1877.
|
2 |
TUAN T A, LONG H V, SON L H, et al. Performance evaluation of botnet DDoS attack detection using machine learning[J]. Evolutionary Intelligence, 2020, 13(2): 283-294.
|
3 |
LIMA F F S D, SILVEIRA F A F, MEDEIROS B A D, et al. Smart detection: an online approach for DoS/DDoS attack detection using machine learning[J]. Security and Communication Networks, 2019, 2019: 1574749.
|
4 |
SOE Y N, FENG Y K, SANTOSA P I, et al. Machine learning-based IoT-botnet attack detection with sequential architecture[J]. Sensors, 2020, 20(16): 4372.
|
5 |
ZHAI S F, CHENG Y, LU W N, et al. Deep structured energy based models for anomaly detection[C]//Proceedings of International Conference on Machine Learning. New York: ACM Press, 2016: 1100-1109,.
|
6 |
BIN Z, LI F F, XING E P. Online detection of unusual events in videos via dynamic sparse coding[C]//Proceedings of the CVPR. Piscataway: IEEE Press, 2011: 3313-3320.
|
7 |
ZHAO Y R, DENG B, SHEN C, et al. Spatio-temporal autoencoder for video anomaly detection[C]//Proceedings of ACM on Multimedia Conference. New York: ACM Press, 2017: 1933-1941.,.
|
8 |
ZHOU C, PAFFENROTH R. Anomaly detection with robust deep autoencoders[C]//Proceedings of ACM SIGKDD. New York: ACM Press, 2017: 665-674.
|
9 |
AHMAD Z, SHAHID K A, WAI S C, et al. Network intrusion detection system: a systematic study of machine learning and deep learning approaches[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(1): e4150.
|
10 |
THAKKAR A, LOHIYA R. A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions[J]. Artificial Intelligence Review, 2022, 55(1): 453-563.
|
11 |
冯智伟. 面向多旋翼无人机GPS劫持攻击检测和拒绝服务攻击抵御技术的研究[D]. 沈阳: 东北大学, 2020.
|
|
FENG Z W. Research on GPS hijacking attack detection and denial of service attack defense technology for multi-rotor UAV [D]. Shenyang: Northeastern University, 2020.
|
12 |
段雪源, 付钰, 王坤, 等. 基于多尺度特征的网络流量异常检测方法[J]. 通信学报, 2022, 43(10): 65-76.
|
|
DUAN X Y, FU Y, WANG K, et al. Network traffic anomaly detection method based on multi-scale characteristic[J]. Journal on Communications, 2022, 43(10): 65-76.
|
13 |
张凤登, 谢力, 应启戛. 噪声环境中采用探询机制的局域网性能分析[J]. 通信学报, 2002, 23(6): 6-13.
|
|
ZHANG F D, XIE L, YING Q J. Performance analysis of LANs using polling mechanism in a noisy environment[J]. Journal on Communications, 2002, 23(6): 6-13.
|
14 |
侯重远, 江汉红, 芮万智, 等. 工业网络流量异常检测的概率主成分分析法[J]. 西安交通大学学报, 2012, 46(2): 70-75.
|
|
HOU C Y, JIANG H H, RUI W Z, et al. A probabilistic principal component analysis approach for detecting traffic anomaly in industrial networks[J]. Journal of Xi’an Jiaotong University, 2012, 46(2): 70-75.
|
15 |
WANG K, STOLFO S. Anomalous payload-based network intrusion detection[C]//Proceedings of International Symposium on Recent Advances in Intrusion Detection. Berlin: Springer, 2004: 203-222.
|
16 |
XIE M, HU J, HAN S, et al. Scalable hypergrid k-NN-based online anomaly detection in wireless sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 24(8): 1661-1670.
|
17 |
ZHOU X Z, XIE L, ZHANG P, et al. An ensemble of deep neural networks for object tracking[C]//Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2014: 843-847.
|
18 |
YOUSEFI-AZAR M, VARADHARAJAN V, HAMEY L, et al. Autoencoder-based feature learning for cyber security applications[C]//Proceedings of the 2017 International Joint Conference on Neural Networks. Piscataway: IEEE Press, 2017: 3854-3861.
|
19 |
JAVAID A, NIYAZ Q, SUN W Q, et al. A deep learning approach for network intrusion detection system[C]//Proceedings of the Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies. New York: ACM Press, 2016: 21-26.
|
20 |
MIRSKY Y, DOITSHMAN T, ELOVICI Y, et al. Kitsune: an ensemble of autoencoders for online network intrusion detection[J]. arXiv Preprint, arXiv: , 2018.
|
21 |
平国楼, 曾婷玉, 叶晓俊. 基于评分迭代的无监督网络流量异常检测[J]. 清华大学学报(自然科学版), 2022, 62(5): 819-824.
|
|
PING G L, ZENG T Y, YE X J. Unsupervised network traffic anomaly detection based on score iterations[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(5): 819-824.
|
22 |
董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3): 695-703.
|
|
DONG S, ZHANG B. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics & Information Technology, 2020, 42(3): 695-703.
|
23 |
杨岳毅, 王立德, 陈煌, 等. 基于变分自编码器的MVB网络异常检测方法[J]. 铁道学报, 2022, 44(1): 71-78.
|
|
YANG Y, WANG L, CHENG H, et al. Anomaly detection method for MVB network based on variational autoencoder[J]. Journal of the China Railway Society, 2022, 44(1): 71-78.
|
24 |
GONG D, LIU L Q, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 1705-1714.
|
25 |
AGGARWAL C C, PHILIP S Y. A framework for clustering uncertain data streams[C]//Proceedings of IEEE 24th International Conference on Data Engineering. Piscataway: IEEE Press, 2008: 150-159.
|
26 |
WELLER-FAHY D J, BORGHETTI B J, SODEMANN A A. A survey of distance and similarity measures used within network intrusion anomaly detection[J]. IEEE Communications Surveys & Tutorials, 2015, 17(1): 70-91.
|
27 |
LEE C H, SU Y Y, LIN Y C, et al. Machine learning based network intrusion detection[C]//Proceedings of the 2017 2nd IEEE International Conference on Computational Intelligence and Applications. Piscataway: IEEE Press, 2017: 79-83.
|