1 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv Preprint, arXiv: , 2020.
|
2 |
HAO M, LI H, CHEN H, et al. Iron: private inference on transformers[J]. Advances in Neural Information Processing Systems, 2022, 35: 15718-15731.
|
3 |
李凤华, 李晖, 贾焰, 等. 隐私计算研究范畴及发展趋势[J]. 通信学报, 2016, 37(4): 1-11.
|
|
LI F H, LI H, JIA Y, et al. Privacy computing: concept, connotation and its research trend[J]. Journal on Communications, 2016, 37(4): 1-11.
|
4 |
DONG Y, XIAOJUN C, JING W Z, et al. Meteor: improved secure 3-party neural network inference with reducing online communication costs[C]//Proceedings of the ACM Web Conference 2023. New York: ACM Press, 2023: 2087-2098.
|
5 |
NG L K L, CHOW S S M. SoK: cryptographic neural-network computation[C]//Proceedings of 2023 IEEE Symposium on Security and Privacy (SP). Piscataway: IEEE Press, 2023: 497-514.
|
6 |
MOHASSEL P, ZHANG Y. SecureML: a system for scalable priva cy-preserving machine learning[C]//Proceedings of 2017 IEEE Symposium on Security and Privacy (SP). Piscataway: IEEE Press, 2017: 19-38.
|
7 |
DEMMLER D, SCHNEIDER T, ZOHNER M. ABY - a framework for efficient mixed-protocol secure two-party computation[C]//Proceedings of the Network and Distributed System Security Symposium. Piscataway: IEEE Press, 2015: 1-15.
|
8 |
PATRA A, SCHNEIDER T, SURESH A, et al. ABY2.0: improved mixed-protocol secure two-part computation[C]//Proceedings of the 30th USENIX Conference on Security Symposium. Berkeley:USENIX Association 2021: 2165-2182.
|
9 |
WAGH S, TOPLE S, BENHAMOUDA F, et al. FALCON: honest-majority maliciously secure framework for private deep learning[J]. arXiv Preprint, arXiv: , 2020.
|
10 |
SRINIVASAN W Z, AKSHAYARAM P, ADA P R. Delphi: a cryptographic inference service for neural networks[C]//Proceedings of the 29th USENIX Conference on Security Symposium. Berkeley: USE, 2019: 2505-2522.
|
11 |
RATHEE D, RATHEE M, GOLI R K K, et al. SIRNN: a math library for secure rnn inference[C]//Proceedings of 2021 IEEE Symposium on Security and Privacy (SP). Piscataway: IEEE Press, 2021: 1003-1020.
|
12 |
RATHEE D, RATHEE M, KUMAR N, et al. CrypTFlow2: practical 2-party secure inference[C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM Press, 2020: 325-342.
|
13 |
DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[J]. arXiv Preprint, arXiv: , 2018.
|
14 |
KELLER M. MP-SPDZ: a versatile framework for multi-party computation[C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM Press, 2020: 1575-1590.
|
15 |
KNOTT B, VENKATARAMAN S, HANNUN A, et al. CrypTen: secure multi-party computation meets machine learning[J]. arXiv Preprint, arXiv: , 2021.
|
16 |
LI D C, WANG H Y, SHAO R L, et al. MPCFormer: fast, perfor-mant and private transformer inference with MPC[J]. arXiv Preprint, arXiv: , 2022.
|
17 |
CHEN T Y, BAO H B, HUANG S H, et al. THE-X: privacy-preserving transformer inference with homomorphic encryption[J]. arXiv Preprint, arXiv: , 2022.
|
18 |
WANG Y Q, SUH G E, XIONG W J, et al. Characterization of MPC-based private inference for transformer-based models[C]//Proceedings of the 2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). Piscataway: IEEE Press, 2022: 187-197.
|
19 |
熊金波, 周永洁, 毕仁万, 等. 边缘协同的轻量级隐私保护分类框架[J]. 通信学报, 2022, 43(1): 127-137.
|
|
XIONG J B, ZHOU Y J, BI R W, et al. Towards edge-collaborative, lightweight and privacy-preserving classification framework[J]. Journal on Communications, 2022, 43(1): 127-137.
|
20 |
HUANG K, LIU X, FU S, et al. A lightweight privcy-preserving CNN feature extraction framework for mobile sensing[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(3): 1441-1455.
|
21 |
马敏, 付钰, 黄凯. 云环境下基于秘密共享的安全外包主成分分析方案[J]. 信息网络安全, 2023, 23(4): 61-71.
|
|
MA M, FU Y, HUANG K. A principal component analysis scheme for security outsourcing in cloud environment based on secret sharing[J]. Netinfo Security, 2023, 23(4): 61-71.
|
22 |
许春根, 薛少康, 徐磊, 等, 基于安全两方计算的高效神经网络推理协议 [J]. 信息网络安全, 2023, 23(7): 22-30.
|
|
XU C G, XUE S K, XU L, et al. Efficient neural network inference protocol based on secure two-party computation[J]. Netinfo Security, 2023, 23(7): 22-30.
|
23 |
RAN C. Security and composition of multiparty cryptographic protocols[J]. Journal of Cryptology, 2000, 13(1): 143-202.
|
24 |
HAZAY C, LINDELL Y. Efficient secure two-party protocols: techniques and constructions[M]. Berlin: Springer Science & Business Media, 2010.
|
25 |
PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
|
26 |
WILLMOTT C J. Some comments on the evaluation of model performance[J]. Bulletin of the American Meteorological Society, 1982, 63(11): 1309-1313.
|