通信学报 ›› 2024, Vol. 45 ›› Issue (4): 39-53.doi: 10.11959/j.issn.1000-436x.2024027
季薇, 刘子卿
收稿日期:
2023-10-12
修回日期:
2023-12-26
出版日期:
2024-04-30
发布日期:
2024-05-27
作者简介:
基金资助:
Wei JI, Ziqing LIU
Received:
2023-10-12
Revised:
2023-12-26
Online:
2024-04-30
Published:
2024-05-27
Supported by:
摘要:
考虑到未来大型物联网中待服务用户的异构性(接收机产自不同制造商,且具有不同结构、不同功能)和服务需求的多样性,针对功率分割(PS)用户和时间切换(TS)用户共存的异构场景,提出一种IRS辅助的无线携能通信(SWIPT)非正交多址接入(NOMA)通信系统模型。在满足两类用户服务质量的条件下,通过联合优化基站的有源波束成形、IRS的无源相移矩阵、PS用户的功率分割系数、TS用户时间切换系数以及两类用户的串行干扰消除解码顺序来最小化基站的发射功率。为解决该非凸问题,采用基于连续凸逼近的交替迭代方法将问题拆分成多个子问题。针对IRS相移的无源波束成形优化子问题,采用连续秩一约束松弛方法求解。仿真结果表明,IRS辅助的通信系统基站发射功率明显低于无IRS方案;IRS辅助的NOMA通信系统基站发射功率低于IRS辅助的正交多址接入通信系统;IRS辅助的PS-SWIPT系统基站发射功率低于IRS辅助的TS-SWIPT系统。
中图分类号:
季薇, 刘子卿. IRS辅助的异构SWIPT-NOMA系统资源分配方案[J]. 通信学报, 2024, 45(4): 39-53.
Wei JI, Ziqing LIU. Resource allocation scheme for IRS assisted heterogeneous SWIPT-NOMA system[J]. Journal on Communications, 2024, 45(4): 39-53.
1 | WU Q Q, GUAN X R, ZHANG R. Intelligent reflecting surface-aided wireless energy and information transmission: an overview[J]. Proceedings of the IEEE, 2022, 110(1): 150-170. |
2 | WU Q Q, ZHANG R. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106-112. |
3 | CHATAUT R, AKL R. Massive MIMO systems for 5G and beyond networks-overview, recent trends, challenges, and future research direction[J]. Sensors, 2020, 20(10): 2753. |
4 | DAI L L, WANG B C, YUAN Y F, et al. Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends[J]. IEEE Communications Magazine, 2015, 53(9): 74-81. |
5 | ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 721-742. |
6 | GHAFOOR U, ALI M, KHAN H Z, et al. NOMA and future 5G & B5G wireless networks: a paradigm[J]. Journal of Network and Computer Applications, 2022, 204: 103413. |
7 | LU X, WANG P, NIYATO D, et al. Wireless networks with RF energy harvesting: a contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 757-789. |
8 | SHERAZI H H R, ZORBAS D, O'FLYNN B. A comprehensive survey on RF energy harvesting: applications and performance determinants[J]. Sensors, 2022, 22(8): 2990. |
9 | PERERA T D P, JAYAKODY D N K, SHARMA S K, et al. Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 264-302. |
10 | ?ZYURT S, CO?KUN A F, BüYüK?ORAK S, et al. A survey on multiuser SWIPT communications for 5G+[J]. IEEE Access, 2022, 10: 109814-109849. |
11 | LI B G, SI F Q, HAN D S, et al. IRS-aided SWIPT systems with power splitting and artificial noise[J]. China Communications, 2022, 19(4): 108-120. |
12 | TANG J, LUO J C, LIU M Q, et al. Energy efficiency optimization for NOMA with SWIPT[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 452-466. |
13 | GONG S M, LU X, HOANG D T, et al. Toward smart wireless communications via intelligent reflecting surfaces: a contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4): 2283-2314. |
14 | RENZO M D, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450-2525. |
15 | PAN C H, ZHOU G, ZHI K D, et al. An overview of signal processing techniques for RIS/IRS-aided wireless systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 883-917. |
16 | WU Q Q, ZHANG R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394-5409. |
17 | YAN W J, YUAN X J, HE Z Q, et al. Passive beamforming and information transfer design for reconfigurable intelligent surfaces aided multiuser MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1793-1808. |
18 | REHMAN H UR, BELLILI F, MEZGHANI A, et al. Joint active and passive beamforming design for IRS-assisted multi-user MIMO systems: a VAMP-based approach[J]. IEEE Transactions on Communications, 2021, 69(10): 6734-6749. |
19 | BAI T, PAN C H, DENG Y S, et al. Latency minimization for intelligent reflecting surface aided mobile edge computing[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2666-2682. |
20 | DONG L M, WANG H M. Enhancing secure MIMO transmission via intelligent reflecting surface[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7543-7556. |
21 | LI S X, DUO B, YUAN X J, et al. Reconfigurable intelligent surface assisted UAV communication: joint trajectory design and passive beamforming[J]. IEEE Wireless Communications Letters, 2020, 9(5): 716-720. |
22 | ZUO J K, LIU Y W, QIN Z J, et al. Resource allocation in intelligent reflecting surface assisted NOMA systems[J]. IEEE Transactions on Communications, 2020, 68(11): 7170-7183. |
23 | NI W L, LIU X, LIU Y W, et al. Resource allocation for multi-cell IRS-aided NOMA networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4253-4268. |
24 | ZHU J Y, HUANG Y M, WANG J H, et al. Power efficient IRS-assisted NOMA[J]. IEEE Transactions on Communications, 2021, 69(2): 900-913. |
25 | 赵赛, 邹章晨, 黄高飞, 等. 智能反射面辅助毫米波NOMA系统的资源分配联合设计方案[J]. 通信学报, 2022, 43(12): 113-122. |
ZHAO S, ZOU Z C, HUANG G F, et al. Joint design scheme of resource allocation for intelligent reflecting surface assisted millimeter wave NOMA system[J]. Journal on Communications, 2022, 43(12): 113-122. | |
26 | OMID Y, MAHDI SHAHABI S M, PAN C H, et al. Robust beamforming design for an IRS-aided NOMA communication system with CSI uncertainty[J]. IEEE Transactions on Wireless Communications, 2023, 19(4): 108-120. |
27 | MU X D, LIU Y W, GUO L, et al. Exploiting intelligent reflecting surfaces in NOMA networks: joint beamforming optimization[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6884-6898. |
28 | WU Q Q, ZHANG R. Weighted sum power maximization for intelligent reflecting surface aided SWIPT[J]. IEEE Wireless Communications Letters, 2020, 9(5): 586-590. |
29 | WU Q Q, ZHANG R. Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT under QoS constraints[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1735-1748. |
30 | 朱政宇, 徐金雷, 孙钢灿, 等. 基于IRS辅助的SWIPT物联网系统安全波束成形设计[J]. 通信学报, 2021, 42(4): 185-193. |
ZHU Z Y, XU J L, SUN G C, et al. Secure beamforming design for IRS-assisted SWIPT Internet of things system[J]. Journal on Communications, 2021, 42(4): 185-193. | |
31 | PAN C H, REN H, WANG K Z, et al. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1719-1734. |
32 | 季薇, 赵亚楠, 刘子卿, 等. 面向服务质量的RIS辅助的多用户NOMA系统功率分配方案[J]. 电子与信息学报, 2023, 45(10): 3603-3611. |
JI W, ZHAO Y N, LIU Z Q, et al. QoS-oriented power allocation scheme for multi-user NOMA system assisted by RIS[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3603-3611. | |
33 | LI Z D, CHEN W, WU Q Q, et al. Joint beamforming design and power splitting optimization in IRS-assisted SWIPT NOMA networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(3): 2019-2033. |
34 | WU Q Q, ZHANG R. Beamforming optimization for intelligent reflecting surface with discrete phase shifts[C]//Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE Press, 2019: 7830-7833. |
35 | GUO H Y, LIANG Y C, CHEN J, et al. Weighted sum-rate maximization for intelligent reflecting surface enhanced wireless networks[C]//Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM). Piscataway: IEEE Press, 2019: 1-6. |
36 | CAO H Q, LI Z D, CHEN W. Resource allocation for IRS-assisted wireless powered communication networks[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2450-2454. |
37 | CAO P, THOMPSON J, POOR H V. A sequential constraint relaxation algorithm for rank-one constrained problems[C]//Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO). Piscataway: IEEE Press, 2017: 1060-1064. |
38 | BEN-TAL A, NEMIROVSKI? A S. Lectures on modern convex optimization: analysis, algorithms, and engineering applications[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2001. |
39 | BOYD S, VANDENBERGHE L. Convex optimization[M]. Cambridge: Cambridge University Press, 2004. |
[1] | 杨守义, 李富康, 任瑞敏. 信任环境下考虑系统公平性的边缘计算卸载策略和资源分配[J]. 通信学报, 2024, 45(3): 142-154. |
[2] | 夏玮玮, 辛逸飞, 梁栋, 吴军, 王歆, 燕锋, 沈连丰. 智能电网中基于二分图匹配的网络切片资源分配算法[J]. 通信学报, 2024, 45(3): 17-28. |
[3] | 曾晓婉, 王海军, 黄蕾, 马东堂. 无人机辅助D2D通信网络安全通信资源分配算法[J]. 通信学报, 2024, 45(2): 115-126. |
[4] | 季薇, 杨许鑫, 李飞, 李汀, 梁彦, 宋云超. 无人机辅助MEC系统中基于最优SIC顺序的能耗优化方案[J]. 通信学报, 2024, 45(2): 18-30. |
[5] | 李斌, 彭思聪, 费泽松. 基于边缘计算的无人机通感融合网络波束成形与资源优化[J]. 通信学报, 2023, 44(9): 228-237. |
[6] | 唐冬, 黄栩蔚, 罗至威, 赵赛, 黄高飞. 无线供能智能反射面辅助移动边缘计算系统设计与优化[J]. 通信学报, 2023, 44(9): 79-92. |
[7] | 陈发堂, 张若凡. 可重构智能反射面辅助的车联网资源分配算法研究[J]. 通信学报, 2023, 44(9): 70-78. |
[8] | 陈发堂, 黄淼, 金宇峰. 面向用户传输差异的低轨道地球卫星资源分配策略[J]. 通信学报, 2023, 44(8): 125-133. |
[9] | 杨凡, 杨成, 黄杰, 张仕龙, 喻涛, 左迅, 杨川. 6G密集网络中基于深度强化学习的资源分配策略[J]. 通信学报, 2023, 44(8): 215-227. |
[10] | 曾锋, 张政, 陈志刚. 基于深度强化学习的计算卸载与资源分配策略[J]. 通信学报, 2023, 44(7): 124-135. |
[11] | 林敏, 郭怀波, 刘笑宇, 韩略, 谈苗苗, 杨绿溪. IRS辅助的星地融合认知网络中断性能分析[J]. 通信学报, 2023, 44(7): 64-75. |
[12] | 李云, 高倩, 姚枝秀, 夏士超, 梁吉申. 移动边缘计算中智能服务编排和算网资源分配联合优化方法[J]. 通信学报, 2023, 44(7): 51-63. |
[13] | 杨龙, 赵丽, 周雨晨, 贺冰涛, 陈健. 缓存辅助的协作NOMA携能传输[J]. 通信学报, 2023, 44(6): 77-89. |
[14] | 王再见, 谷慧敏. 基于联合优化的网络切片资源分配策略[J]. 通信学报, 2023, 44(5): 234-245. |
[15] | 余雪勇, 邱礼翔, 宋家宁, 朱洪波. 无人机辅助边缘计算中安全通信与能效优化策略[J]. 通信学报, 2023, 44(3): 45-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|