1 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv Preprint, arXiv: , 2018.
|
2 |
SENNRICH R, HADDOW B, BIRCH A. Improving neural machine translation models with monolingual data[J]. arXiv Preprint, arXiv: , 2015.
|
3 |
PHAM N L, NGUYEN V V, PHAM T V. A data augmentation method for English-Vietnamese neural machine translation[J]. IEEE Access, 2023, 11: 28034-28044.
|
4 |
LAMAR A, KAYA Z. Measuring the impact of data augmentation methods for extremely low-resource NMT[C]//Proceedings of the Sixth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2023). Stroudsburg: Association for Computational Linguistics, 2023: 101-109.
|
5 |
CAI D, WANG Y, LI H Y, et al. Neural machine translation with monolingual translation memory[J]. arXiv Preprint, arXiv: , 2021.
|
6 |
LIU Y H, GU J T, GOYAL N, et al. Multilingual denoising pre-training for neural machine translation[J]. arXiv Preprint, arXiv: , 2020.
|
7 |
VAKHARIA P, VIGNESH S S, BASMATKAR P. Low-resource formality controlled NMT using pre-trained LM[C]//Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023). Stroudsburg: Association for Computational Linguistics, 2023: 321-329.
|
8 |
EDUNOV S, OTT M, AULI M, et al. Understanding back-translation at scale[J]. arXiv Preprint, arXiv: , 2018.
|
9 |
HASSAN H, AUE A, CHEN C, et al. Achieving human parity on automatic Chinese to English news translation[J]. arXiv Preprint, arXiv: , 2018.
|
10 |
NG N, YEE K, BAEVSKI A, et al. Facebook FAIR's WMT19 news translation task submission[J]. arXiv Preprint, arXiv: , 2019.
|
11 |
ZHANG J J, ZONG C Q. Exploiting source-side monolingual data in neural machine translation[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2016: 1535-1545.
|
12 |
KIM Y, RUSH A M. Sequence-level knowledge distillation[J]. arXiv Preprint, arXiv: , 2016.
|
13 |
ZHOU C T, NEUBIG G, GU J T. Understanding knowledge distillation in non-autoregressive machine translation[J]. arXiv Preprint, arXiv: , 2019.
|
14 |
JIAO W X, WANG X, HE S L, et al. Data rejuvenation: exploiting inactive training examples for neural machine translation[J]. arXiv Preprint, arXiv: , 2020.
|
15 |
TONJA A L, KOLESNIKOVA O, GELBUKH A, et al. Low-resource neural machine translation improvement using source-side monolingual data[J]. Applied Sciences, 2023, 13(2): 1201.
|
16 |
XU H Y, WANG X, XING X L, et al. Monolingual denoising with large language models for low-resource machine translation[C]//Proceedings of the International Conference on Natural Language Processing and Chinese Computing. Berlin: Springer, 2023: 413-425.
|
17 |
SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 761-769.
|
18 |
MUKHERJEE S, AWADALLAH A H. Uncertainty-aware self-training for text classification with few labels[J]. arXiv Preprint, arXiv: , 2020.
|
19 |
CASWELL I, CHELBA C, GRANGIER D. Tagged back-translation[J]. arXiv Preprint, arXiv: , 2019.
|
20 |
WU L J, WANG Y R, XIA Y C, et al. Exploiting monolingual data at scale for neural machine translation[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg: Association for Computational Linguistics, 2019: 4207-4216.
|
21 |
WANG S, LIU Y, WANG C, et al. Improving back-translation with uncertainty-based confidence estimation[J]. arXiv Preprint, arXiv: , 2019.
|
22 |
JIAO W X, WANG X, TU Z P, et al. Self-training sampling with monolingual data uncertainty for neural machine translation[J]. arXiv Preprint, arXiv: , 2021.
|
23 |
DUAN S F, ZHAO H, ZHANG D D. Syntax-aware data augmentation for neural machine translation[J]. ACM Transactions on Audio, Speech, and Language Processing, 2023, 31: 2988-2999.
|
24 |
LI J W, MONROE W, JURAFSKY D. A simple, fast diverse decoding algorithm for neural generation[J]. arXiv Preprint, arXiv: , 2016.
|
25 |
SHU R, NAKAYAMA H, CHO K. Generating diverse translations with sentence codes[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2019: 1823-1827.
|
26 |
LI Z C, HE S X, ZHANG Z S, et al. Joint learning of POS and dependencies for multilingual universal dependency parsing[C]//Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Stroudsburg: Association for Computational Linguistics, 2018: 65-73.
|
27 |
HE S X, LI Z C, ZHAO H, et al. Syntax for semantic role labeling, to be, or not to be[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2018: 2061-2071.
|
28 |
LI Z C, CAI J X, HE S X, et al. Seq2seq dependency parsing[C]//Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2018: 3203-3214.
|
29 |
XIE Z A, WANG S, LI J W, et al. Data noising as smoothing in neural network language models[J]. arXiv Preprint, arXiv: , 2017.
|
30 |
ZHANG Z S, ZHAO H, QIN L H. Probabilistic graph-based dependency parsing with convolutional neural network[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016: 1382-1392.
|
31 |
LI Z C, CAI J X, ZHAO H. Effective representation for easy-first dependency parsing[C]//Pacific Rim International Conference on Artificial Intelligence. Berlin: Springer, 2019: 351-363.
|
32 |
WU Y T, ZHAO H, TONG J J. Multilingual universal dependency parsing from raw text with low-resource language enhancement[C]//Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Stroudsburg: Association for Computational Linguistics, 2018: 74-80.
|
33 |
ERIGUCHI A, HASHIMOTO K, TSURUOKA Y. Tree-to-sequence attentional neural machine translation[J]. arXiv Preprint, arXiv: 1603. 06075, 2016.
|
34 |
AHARONI R, GOLDBERG Y. Towards string-to-tree neural machine translation[J]. arXiv Preprint, arXiv: , 2017.
|
35 |
ARAZO E, ORTEGO D, ALBERT P, et al. Pseudo-labeling and confirmation bias in deep semi-supervised learning[C]//Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2020: 1-8.
|
36 |
CHANG H S, LEARNED-MILLER E, MCCALLUM A. Active bias: training more accurate neural networks by emphasizing high variance samples[J]. arXiv Preprint, arXiv: , 2017.
|
37 |
SENNRICH R, HADDOW B, BIRCH A. Neural machine translation of rare words with subword units[J]. arXiv Preprint, arXiv: 1508. 07909, 2015.
|
38 |
POST M. A call for clarity in reporting BLEU scores[J]. arXiv Preprint, arXiv: , 2018.
|
39 |
PAPINENI K, ROUKOS S, WARD T, et al. BLEU: a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. New York: ACM Press, 2002: 311-318.
|
40 |
WEI J, ZOU K. EDA: easy data augmentation techniques for boosting performance on text classification tasks[J]. arXiv Preprint, arXiv: , 2019.
|