1 |
李晓龙, 俞能海, 张新鹏, 等. 数字媒体取证技术综述[J]. 中国图象图形学报, 2021, 26(6): 1216-1226.
|
|
LI X L, YU N H, ZHANG X P, et al. Overview of digital media forensics technology[J]. Journal of Image and Graphics, 2021, 26(6): 1216-1226.
|
2 |
BIANCHI T, PIVA A. Image forgery localization via block-grained analysis of JPEG artifacts[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3): 1003-1017.
|
3 |
CHIERCHIA G, POGGI G, SANSONE C, et al. A Bayesian-MRF approach for PRNU-based image forgery detection[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(4): 554-567.
|
4 |
KORUS P, HUANG J W. Multi-scale fusion for improved localization of malicious tampering in digital images[J]. IEEE Transactions on Image Processing, 2016, 25(3): 1312-1326.
|
5 |
李昊东, 庄培裕, 李斌. 基于深度学习的数字图像篡改定位方法综述[J]. 信号处理, 2021, 37(12): 2278-2301.
|
|
LI H D, ZHUANG P Y, LI B. A survey on deep learning based digital image tampering localization methods[J]. Journal of Signal Processing, 2021, 37(12): 2278-2301.
|
6 |
ZHOU P, HAN X T, MORARIU V I, et al. Learning rich features for image manipulation detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 1053-1061.
|
7 |
ZHUANG P Y, LI H D, TAN S Q, et al. Image tampering localization using a dense fully convolutional network[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2986-2999.
|
8 |
WU Y, ABDALMAGEED W, NATARAJAN P. ManTra-Net: manipulation tracing network for detection and localization of image forgeries with anomalous features[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 9535-9544.
|
9 |
CHEN X R, DONG C B, JI J Q, et al. Image manipulation detection by multi-view multi-scale supervision[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 14165-14173.
|
10 |
ZHUO L, TAN S Q, LI B, et al. Self-adversarial training incorporating forgery attention for image forgery localization[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 819-834.
|
11 |
GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[J]. arXiv Preprint, arXiv: , 2014.
|
12 |
WU H W, ZHOU J T, TIAN J Y, et al. Robust image forgery detection against transmission over online social networks[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 443-456.
|
13 |
GUO X, LIU X H, REN Z Y, et al. Hierarchical fine-grained image forgery detection and localization[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 3155-3165.
|
14 |
BI X L, YAN W Q, LIU B, et al. Self-supervised image local forgery detection by JPEG compression trace[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(1): 232-240.
|
15 |
WU H W, ZHOU J T, ZHANG S L. Generalizable synthetic image detection via language-guided contrastive learning[J]. arXiv Preprint, arXiv: , 2023.
|
16 |
LORENZ P, DURALL R L, KEUPER J. Detecting images generated by deep diffusion models using their local intrinsic dimensionality[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway: IEEE Press, 2023: 448-459.
|
17 |
TANTARU D, ONEATA E, ONEATA D. Weakly-supervised deepfake localization in diffusion-generated images[J]. arXiv Preprint, arXiv: , 2023.
|
18 |
SUN W W, ZHOU J T, LI Y M, et al. Robust high-capacity watermarking over online social network shared images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(3): 1208-1221.
|
19 |
SUN W W, ZHOU J T, LYU R, et al. Processing-aware privacy-preserving photo sharing over online social networks[C]//Proceedings of the 24th ACM international conference on Multimedia. New York: ACM Press, 2016: 581-585.
|
20 |
LIU X H, LIU Y J, CHEN J, et al. PSCC-Net: progressive spatio-channel correlation network for image manipulation detection and localization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(11): 7505-7517.
|
21 |
CHEN J X, LIAO X, WANG W, et al. A features decoupling method for multiple manipulations identification in image operation chains[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE Press, 2021: 2505-2509.
|
22 |
CHEN J X, LIAO X, WANG W, et al. SNIS: a signal noise separation-based network for post-processed image forgery detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(2): 935-951.
|
23 |
WANG W H, XIE E Z, LI X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 548-558.
|
24 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2015: 234-241.
|
25 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv Preprint, arXiv: , 2020.
|
26 |
LIU A S, TANG S Y, LIANG S Y, et al. Exploring the relationship between architecture and adversarially robust generalization[J]. arXiv Preprint, arXiv: arXiv: , 2022.
|
27 |
NASEER M, RANASINGHE K, KHAN S, et al. Intriguing properties of vision transformers[J]. arXiv Preprint, arXiv: , 2021.
|
28 |
ZHOU Y M, YING Q C, WANG Y F, et al. Robust watermarking for video forgery detection with improved imperceptibility and robustness[C]// Proceedings of the 2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP). Piscataway: IEEE Press, 2022: 1-6.
|
29 |
HUANG Y H, BIAN S, LI H D, et al. DS-UNet: a dual streams UNet for refined image forgery localization[J]. Information Sciences, 2022, 610: 73-89.
|
30 |
LIU B, WU R L, BI X L, et al. D-UNet: a dual-encoder U-Net for image splicing forgery detection and localization[J]. arXiv Preprint, arXiv: , 2020.
|
31 |
WANG W H, XIE E Z, LI X, et al. PVT v2: improved baselines with pyramid vision transformer[J]. Computational Visual Media, 2022, 8(3): 415-424.
|
32 |
NG T T, CHANG S F. A data set of authentic and spliced image blocks[R]. Columbia University, Advent Technical Report, 2004.
|
33 |
GUAN H Y, KOZAK M, ROBERTSON E, et al. MFC datasets: large-scale benchmark datasets for media forensic challenge evaluation[C]//Proceedings of the 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW). Piscataway: IEEE Press, 2019: 63-72.
|
34 |
DONG J, WANG W, TAN T N. CASIA image tampering detection evaluation database[C]//Proceedings of the 2013 IEEE China Summit and International Conference on Signal and Information Processing. Piscataway: IEEE Press, 2013: 422-426.
|
35 |
NOVOZáMSKY A, MAHDIAN B, SAIC S. IMD2020: a large-scale annotated dataset tailored for detecting manipulated images[C]//Proceedings of the 2020 IEEE Winter Applications of Computer Vision Workshops (WACVW). Piscataway: IEEE Press, 2020: 71-80.
|
36 |
WEN B H, ZHU Y, SUBRAMANIAN R, et al. COVERAGE—a novel database for copy-move forgery detection[C]//Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2016: 161-165.
|
37 |
CARVALHO T J D, RIESS C, ANGELOPOULOU E, et al. Exposing digital image forgeries by illumination color classification[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(7): 1182-1194.
|
38 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//European Conference on Computer Vision. Berlin: Springer, 2014: 740-755.
|