通信学报 ›› 2022, Vol. 43 ›› Issue (12): 188-201.doi: 10.11959/j.issn.1000-436x.2022224
邢旺1,2, 唐晓刚3, 周一青1,2, 张冲1,2, 潘振岗4
修回日期:
2022-10-10
出版日期:
2022-12-25
发布日期:
2022-12-01
作者简介:
邢旺(1996- ),男,河北廊坊人,中国科学院计算技术研究所博士生,主要研究方向为通信与计算融合、存储通信、正交时频空间调制技术等基金资助:
Wang XING1,2, Xiaogang TANG3, Yiqing ZHOU1,2, Chong ZHANG1,2, Zhengang PAN4
Revised:
2022-10-10
Online:
2022-12-25
Published:
2022-12-01
Supported by:
摘要:
为了在高移动性场景中提供稳定可靠的通信服务,6G 系统可考虑基于时延–多普勒(DD)域的正交时频空间(OTFS)作为其调制方案。OTFS通过将发送符号映射到DD域,再将其二维变换到时间–频率(TF)域,使所有发送符号具备获取时频全分集的潜力,有效提高了双选择性信道下的通信性能。由于DD域等效信道具有很多良好性质,现有OTFS信道估计方法大多在DD域完成。考虑实现思路的差异和算法应用场景的区别,已有面向OTFS的DD域信道估计方法被划分为3类并进行综述。最后总结分析了当前DD域信道估计方法的挑战及潜在解决思路。
中图分类号:
邢旺, 唐晓刚, 周一青, 张冲, 潘振岗. 面向OTFS的时延-多普勒域信道估计方法综述[J]. 通信学报, 2022, 43(12): 188-201.
Wang XING, Xiaogang TANG, Yiqing ZHOU, Chong ZHANG, Zhengang PAN. Survey of channel estimation method in delay-Doppler domain for OTFS[J]. Journal on Communications, 2022, 43(12): 188-201.
[1] | LIU G Y , HUANG Y H , LI N ,et al. Vision,requirements and network architecture of 6G mobile network beyond 2030[J]. China Communications, 2020,17(9): 92-104. |
[2] | GUI G , LIU M , TANG F X ,et al. 6G:opening new horizons for integration of comfort,security,and intelligence[J]. IEEE Wireless Communications, 2020,27(5): 126-132. |
[3] | YOU X H , WANG C X , HUANG J ,et al. Towards 6G wireless communication networks:vision,enabling technologies,and new paradigm shifts[J]. Science China Information Sciences, 2020,64(1): 1-74. |
[4] | LIU L , ZHOU Y Q , YUAN J H ,et al. Economically optimal MS association for multimedia content delivery in cache-enabled heterogeneous cloud radio access networks[J]. IEEE Journal on Selected Areas in Communications, 2019,37(7): 1584-1593. |
[5] | LIU L , ZHOU Y Q , ZHUANG W H ,et al. Tractable coverage analysis for hexagonal macrocell-based heterogeneous UDNs with adaptive interference-aware CoMP[J]. IEEE Transactions on Wireless Communications, 2019,18(1): 503-517. |
[6] | 李华, 郝诗雅, 巩彩红 ,等. 面向6G的新型多址与波形技术[J]. 电信科学, 2022,38(10): 36-45. |
LI H , HAO S Y , GONG C H ,et al. New multiple access and waveform technology for 6G[J]. Telecommunications Science, 2022,38(10): 36-45. | |
[7] | 张成磊, 付玉龙, 李晖 ,等. 6G 网络安全场景分析及安全模型研究[J]. 网络与信息安全学报, 2021,7(1): 28-45. |
ZHANG C L , FU Y L , LI H ,et al. Research on security scenarios and security models for 6G networking[J]. Chinese Journal of Network and Information Security, 2021,7(1): 28-45. | |
[8] | GERACI G , GARCIA-RODRIGUEZ A , AZARI M M ,et al. What will the future of UAV cellular communications be? a flight from 5G to 6G[J]. IEEE Communications Surveys & Tutorials, 2022,24(3): 1304-1335. |
[9] | CHENG X , HUANG Z W , BAI L . Channel nonstationarity and consistency for beyond 5G and 6G:a survey[J]. IEEE Communications Surveys & Tutorials, 2022,24(3): 1634-1669. |
[10] | ZHOU Y Q , LIU L , WANG L ,et al. Service-aware 6G:an intelligent and open network based on the convergence of communication,computing and caching[J]. Digital Communications and Networks, 2020,6(3): 253-260. |
[11] | ZHOU Y Q , TIAN L , LIU L ,et al. Fog computing enabled future mobile communication networks:a convergence of communication and computing[J]. IEEE Communications Magazine, 2019,57(5): 20-27. |
[12] | SU Y T , LIU Y Q , ZHOU Y Q ,et al. Broadband LEO satellite communications:architectures and key technologies[J]. IEEE Wireless Communications, 2019,26(2): 55-61. |
[13] | IMT-2030(6G). White paper on 6G network architecture vision and key technology outlook[R]. 2021. |
[14] | TSE D , VISWANATH P . Fundamentals of wireless communication[M]. Cambridge: Cambridge University Press, 2005. |
[15] | WANG T J , PROAKIS J G , MASRY E ,et al. Performance degradation of OFDM systems due to Doppler spreading[J]. IEEE Transactions on Wireless Communications, 2006,5(6): 1422-1432. |
[16] | HOU Z W , ZHOU Y Q , TIAN L ,et al. Radio environment map-aided Doppler shift estimation in LTE railway[J]. IEEE Transactions on Vehicular Technology, 2017,66(5): 4462-4467. |
[17] | ZHOU Y Q , WANG J Z , SAWAHASHI M . Downlink transmission of broadband OFCDM systems-part II:effect of Doppler shift[J]. IEEE Transactions on Communications, 2006,54(6): 1097-1108. |
[18] | BELLO P . Characterization of randomly time-variant linear channels[J]. IEEE Transactions on Communications Systems, 1963,11(4): 360-393. |
[19] | SAYEED A M , AAZHANG B . Joint multipath-Doppler diversity in mobile wireless communications[J]. IEEE Transactions on Communications, 1999,47(1): 123-132. |
[20] | HADANI R , RAKIB S , TSATSANIS M ,et al. Orthogonal time frequency space modulation[C]// Proceedings of 2017 IEEE Wireless Communications and Networking Conference. Piscataway:IEEE Press, 2017: 1-6. |
[21] | RAVITEJA P , PHAN K T , HONG Y . Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels[J]. IEEE Transactions on Vehicular Technology, 2019,68(5): 4906-4917. |
[22] | RAVITEJA P , HONG Y , VITERBO E ,et al. Effective diversity of OTFS modulation[J]. IEEE Wireless Communications Letters, 2020,9(2): 249-253. |
[23] | SURABHI G D , AUGUSTINE R M , CHOCKALINGAM A . On the diversity of uncoded OTFS modulation in doubly-dispersive channels[J]. IEEE Transactions on Wireless Communications, 2019,18(6): 3049-3063. |
[24] | SURABHI G D , AUGUSTINE R M , CHOCKALINGAM A . Peak-to-average power ratio of OTFS modulation[J]. IEEE Communications Letters, 2019,23(6): 999-1002. |
[25] | KOLLENGODE RAMACHANDRAN M , CHOCKALINGAM A . MIMO-OTFS in high-Doppler fading channels:signal detection and channel estimation[C]// Proceedings of 2018 IEEE Global Communications Conference. Piscataway:IEEE Press, 2018: 206-212. |
[26] | LI L J , LIANG Y , FAN P Z ,et al. Low complexity detection algorithms for OTFS under rapidly time-varying channel[C]// Proceedings of 2019 IEEE 89th Vehicular Technology Conference. Piscataway:IEEE Press, 2019: 1-5. |
[27] | HADANI R , MONK A . OTFS:a new generation of modulation addressing the challenges of 5G[J]. arXiv Preprint,arXiv:1802.02623, 2018. |
[28] | PAN J . Cramer-Rao low bound of channel estimation for orthogonal time frequency space modulation system[J]. IEEE Transactions on Vehicular Technology, 2021,70(10): 9646-9658. |
[29] | RAVITEJA P , VITERBO E , HONG Y . OTFS performance on static multipath channels[J]. IEEE Wireless Communications Letters, 2019,8(3): 745-748. |
[30] | GAUDIO L , KOBAYASHI M , CAIRE G ,et al. Joint radar target detection and parameter estimation with MIMO OTFS[C]// Proceedings of 2020 IEEE Radar Conference. Piscataway:IEEE Press, 2020: 1-6. |
[31] | FENG X , ESMAIEL H , WANG J F ,et al. Underwater acoustic communications based on OTFS[C]// Proceedings of 2020 15th IEEE International Conference on Signal Processing. Piscataway:IEEE Press, 2020: 439-444. |
[32] | LI S Y , YUAN W J , WEI Z Q ,et al. Hybrid MAP and PIC detection for OTFS modulation[J]. IEEE Transactions on Vehicular Technology, 2021,70(7): 7193-7198. |
[33] | ENKU Y K , BAI B M , WAN F ,et al. Two-dimensional convolutional neural network-based signal detection for OTFS systems[J]. IEEE Wireless Communications Letters, 2021,10(11): 2514-2518. |
[34] | 李赞, 胡俊凡, 李兵 ,等. 基于正交时频空技术的低轨卫星通信的安全分析[J]. 通信学报, 2021,42(8): 25-32. |
LI Z , HU J F , LI B ,et al. Secrecy analysis for orthogonal time frequency space technique based LEO satellite communication[J]. Journal on Communications, 2021,42(8): 25-32. | |
[35] | MURALI K R , CHOCKALINGAM A . On OTFS modulation for high-Doppler fading channels[C]// Proceedings of 2018 Information Theory and Applications Workshop (ITA). Piscataway:IEEE Press, 2018: 1-10. |
[36] | WEI Z Q , YUAN W J , LI S Y ,et al. Orthogonal time-frequency space modulation:a promising next-generation waveform[J]. IEEE Wireless Communications, 2021,28(4): 136-144. |
[37] | GAUDIO L , COLAVOLPE G , CAIRE G . OTFS vs OFDM in the presence of sparsity:a fair comparison[J]. IEEE Transactions on Wireless Communications, 2022,21(6): 4410-4423. |
[38] | RAVITEJA P , PHAN K T , HONG Y ,et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018,17(10): 6501-6515. |
[39] | RAVITEJA P , HONG Y , VITERBO E ,et al. Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS[J]. IEEE Transactions on Vehicular Technology, 2019,68(1): 957-961. |
[40] | WEI Z Q , YUAN W J , LI S Y ,et al. Transmitter and receiver window designs for orthogonal time-frequency space modulation[J]. IEEE Transactions on Communications, 2021,69(4): 2207-2223. |
[41] | OBATA H , TSUJI N , FURUMOTO K . Frequency bandwidth narrowing technology for pulsed magnetrons[J]. IEEE Transactions on Electron Devices, 2009,56(12): 3191-3195. |
[42] | YUAN W J , LI S Y , WEI Z Q ,et al. Data-aided channel estimation for OTFS systems with a superimposed pilot and data transmission scheme[J]. IEEE Wireless Communications Letters, 2021,10(9): 1954-1958. |
[43] | ZHAO H , KANG Z Q , WANG H . A novel channel estimation scheme for OTFS[C]// Proceedings of 2020 IEEE 20th International Conference on Communication Technology. Piscataway:IEEE Press, 2020: 12-16. |
[44] | KSCHISCHANG F R , FREY B J , LOELIGER H A . Factor graphs and the sum-product algorithm[J]. IEEE Transactions on Information Theory, 2001,47(2): 498-519. |
[45] | MISHRA H B , SINGH P , PRASAD A K ,et al. OTFS channel estimation and data detection designs with superimposed pilots[J]. IEEE Transactions on Wireless Communications, 2022,21(4): 2258-2274. |
[46] | ZHAO L , GAO W J , GUO W B . Sparse Bayesian learning of delay-Doppler channel for OTFS system[J]. IEEE Communications Letters, 2020,24(12): 2766-2769. |
[47] | LIU F , YUAN Z D , GUO Q H ,et al. Message passing-based structured sparse signal recovery for estimation of OTFS channels with fractional Doppler shifts[J]. IEEE Transactions on Wireless Communications, 2021,20(12): 7773-7785. |
[48] | WINN J , CHRISTOPHER M B . Variational message passing[J]. Journal of Machine Learning Research, 2005,6: 661-694. |
[49] | 蒋占军, 刘庆达, 张鈜 ,等. 高速移动通信系统中OTFS分数多普勒信道估计加窗研究[J]. 电子与信息学报, 2022,44(2): 646-653. |
JIANG Z J , LIU Q D , ZHANG H ,et al. Study on OTFS fractional Doppler channel estimation and windowing in high-speed mobile communication systems[J]. Journal of Electronics & Information Technology, 2022,44(2): 646-653. | |
[50] | WEI Z Q , YUAN W J , LIT S ,et al. A new off-grid channel estimation method with sparse Bayesian learning for OTFS systems[C]// Proceedings of 2021 IEEE Global Communications Conference. Piscataway:IEEE Press, 2021: 1-7. |
[51] | WANG Q L , JIA B W , ZHANG Z Q ,et al. OTFS channel estimation via 2D off-grid decomposition and SBL combination[C]// Proceedings of 2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops). Piscataway:IEEE Press, 2021: 416-421. |
[52] | RASHEED O K , SURABHI G D , CHOCKALINGAM A . Sparse delay-Doppler channel estimation in rapidly time-varying channels for multiuser OTFS on the uplink[C]// Proceedings of 2020 IEEE 91st Vehicular Technology Conference. Piscataway:IEEE Press, 2020: 1-5. |
[53] | TROPP J A , GILBERT A C . Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007,53(12): 4655-4666. |
[54] | DAI W , MILENKOVIC O . Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009,55(5): 2230-2249. |
[55] | 蒋占军, 刘庆达 . 高速移动通信系统中OTFS信道估计算法研究[J]. 电子与信息学报, 2021,43(10): 2878-2885. |
JIANG Z J , LIU Q D . Study on OTFS channel estimation algorithms in high-speed mobile communication systems[J]. Journal of Electronics& Information Technology, 2021,43(10): 2878-2885. | |
[56] | 3GPP. Study LTE-based V2X services:TR 36.885(V14.0.0) Release 14[S]. 2016. |
[57] | QU H Y , LIU G H , ZHANG L ,et al. Low-dimensional subspace estimation of continuous-Doppler-spread channel in OTFS systems[J]. IEEE Transactions on Communications, 2021,69(7): 4717-4731. |
[1] | 杨光, 吴朝阳, 聂敏, 闫晓红, 江帆. 基于CWGAN-SLM的多小波OFDM系统峰均比抑制算法研究[J]. 通信学报, 2023, 44(4): 99-110. |
[2] | 崔伟, 于颖, 于海霞, 陈超, 李云鹏. 基于IOC-CSMP的OFDM系统稀疏信道快速重构算法[J]. 通信学报, 2023, 44(2): 52-58. |
[3] | 郭漪, 王翊卿, 樊媛媛, 刘刚. 基于子载波补给索引调制的OFDM传输方案[J]. 通信学报, 2023, 44(2): 104-111. |
[4] | 曾嵘, 杭潇. 车联网环境下可重构智能反射面辅助无线信道估计算法[J]. 通信学报, 2022, 43(8): 142-150. |
[5] | 蒋占军, 刘欢, 张华卫, 李翠然. OTFS接收端信道估计辅助的无记忆功放非线性失真补偿算法[J]. 通信学报, 2022, 43(12): 134-145. |
[6] | 许琳森, 杨维, 田洪现. 超声波透金属通信中信道交织器的设计和性能分析[J]. 通信学报, 2022, 43(10): 1-11. |
[7] | 梅锴, 赵海涛, 刘潇然, 刘军, 熊俊, 任保全, 魏急波. 高效的基于数据与模型的信道估计算法[J]. 通信学报, 2022, 43(1): 59-70. |
[8] | 李果, 文妮, 宫丰奎, 张剑, 张思瀚. 部分频带干扰下的OFDM系统干扰检测与分集抑制算法[J]. 通信学报, 2021, 42(9): 194-204. |
[9] | 黄源, 何怡刚, 吴裕庭, 程彤彤, 隋永波, 宁暑光. 基于深度学习的压缩感知FDD大规模MIMO系统稀疏信道估计算法[J]. 通信学报, 2021, 42(8): 61-69. |
[10] | 廖勇, 蔡志镕. 基于基扩展模型的改进正则化正交匹配追踪V2X快时变SC-FDMA信道估计[J]. 通信学报, 2021, 42(4): 177-184. |
[11] | 宫丰奎, 文妮, 李果, 高洋. 基于CAZAC序列的低复杂度抗频偏同步算法[J]. 通信学报, 2021, 42(2): 64-71. |
[12] | 邢智童, 李云, 彭德义, 张本思, 刘凯明, 刘元安. OFDM中一种有效的基于分段非线性压扩的PAPR抑制算法[J]. 通信学报, 2021, 42(12): 44-53. |
[13] | 吕新荣, 李有明, 国强. MIMO-OFDM系统的信道与脉冲噪声联合估计方法[J]. 通信学报, 2021, 42(12): 54-64. |
[14] | 傅友华, 陈栋. 混合智能反射表面结构辅助的毫米波通信信道估计[J]. 通信学报, 2021, 42(10): 189-196. |
[15] | 王莹, 任军, 史可, 林彬. 基于深度学习的广义频分复用系统时频双选择信道估计[J]. 通信学报, 2021, 42(10): 233-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|