
2021年 4月 Journal on Communications April 2021

第 42卷第 4期 Vol.42 No.4

Recovery Mechanism of Large-scale Damaged Edge Computing Net-

work in Industrial Internet of Things

TIAN Hui1, WU Hao1, TIAN Yang 1, REN Jianyang 1, CUI Yajuan 1, AI Wen-bao 2, YUAN Jianhua 2

1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract: Given the limited resources at the early stage of recovery, a failure recovery mechanism of edge computing

networks considering both computational demands and repair costs was proposed, which intends to tackle the problem of

the high probability of large-scale cascading failure caused by the interdependence between edge computing networks

and other subnetworks in industrial Internet of Things (IIoT). Considering the network structure (topology and link ca-

pacities) and system dynamics (computational demands), a joint link recovery selection and computation migration opti-

mization problem was formulated under the conservation of node computing requirements. By leveraging the Benders

decomposition algorithm, the NP-hard problem was transformed into a main problem and a subproblem, which were in-

terdependent and could be solved in polynomial time through the approximation of cutting planes. A local branching

method was further introduced to guarantee the non-increasing nature of the Benders upper bound, thus accelerating the

convergence of Benders decomposition. Simulation results demonstrate that the proposed mechanism outperforms the

conventional topology-based recovery mechanism in system cost, and can perform well in multiple scenarios.

Keywords: industrial Internet of things, edge computing, network recovery, Benders decomposition, local branching

1 Introduction

Industrial Internet of Things (IIoT) is envisioned

as an important booster for the intelligent transfor-

mation of global industrial systems. With hundreds of

millions of seamlessly deployed sensors, collectors

and controllers, IIoT participates in the full cycle of

simulation, prediction and control of manufacturing

processes [1]. As the "brain" of IIoT, edge computing

networks provide more sufficient computing capabil-

ity for resource-limited wireless devices, reduce pro-

cessing and transmission latency, and lay a solid

foundation for enterprise applications such as digital

twin [2] and virtual reality [3]. Meanwhile, cables be-

tween edge computing nodes facilitate the migration

of computing tasks, effectively alleviating the problem

of unevenly distributed computing resources caused

by the temporary- and spatial- fluctuations of compu-

ting demands in IIoT.

The stability of edge computing networks is crit-

ical for efficient operations of IIoT. Once the "brain"

is damaged, IIoT will lose control of "limbs" (e.g.,

supply chain monitoring, data visualization analysis).

However, the stability of the edge computing network

in IIoT faces both internal and external challenges: 1)

edge computing networks are coupled with multiple

sub-networks in IIoT such as power grids and control

systems, forming an interdependent network that is

highly vulnerable [4]; 2) unpredictable disruptions such

as natural disasters and human attacks test the robust-

ness of edge computing networks twenty-four seven [5].

To address these challenges, on the one hand, edge

computing networks can enhance its reliability to

adaptively cope with various network fluctuations and

prevent possible network failures; on the other hand, it

is also of vital importance to explore emergent recov-

ery mechanisms after network damage, such that the

system performance can be restored to pre-damage

level as soon as possible.

Although the design of recovery mechanisms is

crucial for network sustainability and stability, there

are limited efforts that are targeting IIoT. Fortunately,

given the similarity in network topology and system

dynamics, some existing network recovery strategies

can still provide some references for the design of

recovery mechanisms for edge computing networks.

Currently, recovery studies mainly focus on local

damage scenarios where only part of the systems are

affected. In reference [6], Ayoubi et al formulated the

repair of a single node or link as an integer linear pro-

gramming problem, and proposed a data migra-

tion-aware recovery model to achieve well balance

between service disruption rate and repair cost. Fur-

thermore, the authors of reference [7-8] considered the

problem of impaired connectivity in a multi-node

failure scenario, and proposed that the connectivity of

the network could be ensured by using users as relays

through a device-to-device (D2D) manner [7] or by

using mobile access nodes [8]. Unlike the

第 4期 Tian H. et al：Recovery Mechanism of Large-scale Damaged Edge Computing Network in Industrial Internet of Things ·100·

above-mentioned works, the authors of reference [9]

considered the persistent network threat under attack,

and transformed the network dynamic recovery prob-

lem into a differential game theory problem. The

problem was then solved with necessary conditions

for Nash equilibrium and a design of competitive

strategy profile. However, the above studies for local

network recovery often ignore the dynamic character-

istics among global nodes/links (e.g., flow migration)

and practical constraints (e.g., cable layout cannot be

changed), which makes them hard to be extended to

more likely large-scale network damage scenarios in

IIoT.

After large-scale network damage, recovery re-

sources (e.g., repair crews and replaceable devices)

are often limited at an early stage. How to effectively

balance the limited system repair resources and the

need for system performance recovery is an urgent

problem for IIoT. Existing research mainly focuses on

the analysis of network topology. Reference [10] ar-

gued that high-degree nodes have a more important

role in network connectivity and need to be repaired

with priority. Similarly, study [11] considered that links

with large betweenness centrality should be repaired

first in case of link damage. Through real-world big

data analysis, the authors of reference [12] found that

weak nodes, i.e., low-degree nodes that are connected

to multiple high-degree nodes, outrank the influence

of other nodes in network connectivity and their repair

priority should be the highest. However, all these

works based on network connectivity that try to en-

large the maximal connected subgraph are static net-

work structure analyses, ignoring the dynamic char-

acteristics of the network. Large-scale network recov-

ery in real environments will not form a maximal

connected graph until multiple mutually independent

subgraphs have been generated [13]. Therefore, engi-

neering analysis needs to consider more device details

and real transmission dynamics [14]. This type of prob-

lem is also known as the network design problem

(NDP). Given network dynamics features, the com-

plexity of NDP is high, since it is at least a

NP-complete problem. Using dynamic programming

algorithms to solve the problem will cause the prob-

lem of curse of dimensionality [15]. To address the

problem, a more solvable heuristic algorithm was

proposed in reference [16]. Nevertheless, it cannot

provide satisfactory performance guarantees given its

large variance results from the lack of macro network

analysis. Analogously, both simulated annealing algo-

rithms [17] and genetic algorithms [18] face the same

dilemma as heuristics and are easily trapped at local

optimal solutions. Although hill climbing algorithms
[19] and gradient descent algorithms [20] can easily jump

out of the local optimal point and greatly reduce the

computational complexity of NDP, the optimality of

solutions still cannot be ensured.

Given the above dilemmas, we propose a recov-

ery mechanism for large-scale damaged edge compu-

ting networks in IIoT. Consider network vulnerability

caused by interdependence among IIoT sub-networks,

we explore structural characteristics (topology and

link capacity) and system dynamics (computation de-

mands of nodes) of large-scale damaged edge compu-

ting networks. Distinct from existing studies, a joint

optimization problem of link repair selection and

computation migration is designed to balance compu-

tation demands and repair costs at the early stage of

network recovery. The key contributions are summa-

rized as follows.

(1) We propose a network recovery mechanism

for large-scale damaged edge computing networks.

Network structure and dynamics are jointly consid-

ered to provide a repair strategy and resource sched-

uling framework for early-stage network recovery.

(2) Based on Benders decomposition, the original

complicated mixed-integer programming (MIP) prob-

lem for recovery decisions is transformed into a mas-

ter problem and a subproblem. The optimal system

recovery strategies can be obtained by solving the two

problems iteratively. To solve the subproblem, a virtu-

al source node and a virtual destination node are de-

signed, which transfer the problem into a maximum

flow problem.

(3) We develop an accelerated Benders decom-

position algorithm based on local branching. With the

help of Hamming distance, the algorithm can reduce

the search space and improve convergence.

Simulations reveal that the proposed recovery

mechanism has better convergence speed and lower

system costs. Compared with existing schemes, the

proposed approach outperforms benchmarks in multi-

ple network topologies, proving its scalability and

adaptability for IIoT.

2 System Model

We consider an edge network in IIoT that con-

sists of N edge nodes, which are indexed by

{1,2, , }i N = . Edge nodes are connected by

 cable links, where is the set of links in the

system. Cable links are often reliable and only need a

small amount of complexity for channel coding, thus

are considered error-free [21]. The notations used in

this article are summarized in Table 1.

Note that edge computing networks in realistic

IIoT is often hybrid link transmission networks con-
sisting of wired links and wireless links. Given that

wireless links are hard to impair and their repair costs

·99· Journal on communications 第 42卷

are relatively small, only recovery of wired links are

considered. Nevertheless, if the deep fading of

short-term wireless links is neglected, wireless links

can be seen as non-damageable wired links with con-

stant capacity (without considering the reallocation of

bandwidths). Therefore, the hybrid transmission net-

work can be simplified as an equivalent wired net-

work, and the proposed mechanism is still applicable.

Table 1: Summary of notations
Notation Description

N Number of edge nodes

 Set of links
0 Set of damaged links
1 Set of undamaged links

q Percentage of damaged links

ijc Repair cost for link ij

ic Price for discarding one bit data of node i

ip Computed data volume at node i

ip Computation capacity of node i

ir Processing demand of node i

id Discarded data of node i

ijf Data migrated from node i to node j

ijf Capacity of link ij

ije Decision variable for repairing link ij

t Number of iterations of Benders decomposition

t
Optimality of objective during t -th iteration of the

subproblem

t
Threshold for t -th iteration of the left-branch prob-

lem

Edge computing nodes are equipped with com-

plicated self-protection mechanisms (e.g., overheating

protection) and are hard to disrupt. Wired links, on the

contrary, are often the trigger for large-scale damage.

Let q denote the percentage of damaged links in the

system, 0 collect the set of those links, and
1 0= \ be the set of workable links. The damage

of links leads to the re-distribution of balanced data

migration between nodes. What’s worse, it may result

in computing islands (nodes that are separated

from other nodes, e.g., node 1 in Figure 1)，breaking

the match between computing capacity and processing

requirements. Restricted by the limited resources

(such as number of repair crews and replaceable

spares) at the early stage of recovery, restoring all

damaged links simultaneously is impossible. To re-

cover network functions as soon as possible, a set of

damaged links can be repaired first, denoted by
0r r （ ）, according to computing demand dis-

tributions. For any link
0ij , the cost ijc for

maintain, overhaul, and replace is different, given dif-

ferent positions and scale of damage.

Let
ir denote the processing demand of edge

nod i ,
ip be the corresponding amount of

computed data. Nota that
ir is the total volume of

data that arrived at node i at the early stage of re-

covery. For a given scenario, it is a constant that will

not change with time, the value of which can be esti-

mated by historical computing demands. The pro-

cessed data volume of edge node i satisfies

 0 , ,i ip p i (1)

where
ip is the computation capacity of node i .

Damaged link

Undamaged link

Edge node 4f24

Edge node 2

Edge node 3Edge node 1

f23 e23

Figure 1: Topology illustration of a damaged edge computing network

Let ijf be the amount of data migrated between

node i and node \{ }j i . When 0ijf , data is

migrated from node i to node j ; Otherwise, data

flow is from node j to node i . Given the link ca-

pacity ijf , data transformed on link ij follows

 ,ij ijf f ij (2)

For damaged links, the amount of data migrated is not

only determined by the link capacity but also by the

repair decision, i.e.,

 0, ,ij ij ijf f e ij (3)

where

 0e {0,1}, ,ij ij (4)

in which e =1ij represents that link ij is given pri-

ority in repairing (i.e.,
rij); e =0ij means link

ij has not been restored and the actual migrated data

is 0ijf = . Besides, for any link ij , the symmetry of

flows leads to

 , .ij jif f ij= − (5)

When links in set r are repaired, data pro-

cessed at or migrated from node i satisfies

0 1

,i ij ij i i

ij E ij E

p f f d r i

+ + + = ， (6)

第 4期 Tian H. et al：Recovery Mechanism of Large-scale Damaged Edge Computing Network in Industrial Internet of Things ·100·

where
ir is the computing demands of node i , and

 0,id i (7)

represents the data discarded by node i due to back-

log caused by the limited computation capacity of the

edge node.

Repairing as many links as possible can reduce

the amount of data discarded and improve system

performance, but will result in large repair costs. Re-

covering a small number of links, however, may cause

data backlogs to increase and the amount of data dis-

carded to surge. For quantitative analysis, network

performance is measured by data discarding prices.

The larger the prices are, the worse the network per-

formance is. To balance the link repair costs and net-

work performance (data discarding prices) at the early

stage of recovery, a minimization problem of system

cost can be formulated as

P :
0

min = ij ij i i

iij

c e c d

+
e,d, f, p

 s.t. (1)-(7)

where ijc is the repair cost for link
0ij ,

ic de-

notes the price for discarding a unit of data at edge

node i . Link repair decision vector
0(,)ije ij= e , data discarding decision vector

(,)id i= d ， data flow distribution vector

(,)ijf ij= f , and local processed data vector

(,)ip i= p are four sets of variables to be op-

timized. In problem P , system cost consists of two

parts: link repair costs and data discarding prices. To

some extent, the link repair costs 0 ij ijj
c e

 and data

discarding prices
i i ic d are conflicting. The in-

crease of one will lead to the decrease of the other.

The combination of them can effectively balance the

impacts of both in recovery. When link repair cost ijc

is large, the significance of data is relatively small. As

a result, the system would prefer to recover a small

number of links and drop the data in backlogs. Other-

wise, system is inclined to increase the number of

links to be repaired and keep collected data as much

as possible when
ic is high.

 Problem P is a MIP problem that is NP-hard.

Given the large number of variables to be optimized,

there is no algorithm that can solve the problem opti-

mally within polynomial time. Currently, there are

three possible methods that can be used to handle this

type of problem: heuristic algorithms [22], approxima-

tion algorithms [23] and exact algorithms [24]. Heuristic

algorithms respond fast and are simple to apply, but

lack rigorous theoretical proof and often have large

deviations from optimal solutions. Approximation

algorithms, such as the relaxed variable splitting algo-

rithm, are limited by the size of solutions. Unlike the

two types of algorithms, exact algorithms, the cutting

plane algorithm for example, can explore the optimal

solutions well by iterative update of cutting planes and

are widely used in solving MIP.

3 Algorithm design

Benders decomposition [25], a classical cutting

plane algorithm, is widely used to deal with realistic

MIP problems (e.g., locomotive scheduling, airline

route planning). It will neither significantly increase

the number of iterations with the rise of the size of

variable set as in branch-and-bound method, nor occur

curse of dimensionality problem as in dynamic pro-

gramming. Moreover, it will not cause large variance

like what heuristic methods or simulated annealing

algorithms do [26]. In this section, an efficient approach

is proposed to solve problem P based on Benders

decomposition.

3.1 Subproblem and reformulation

By leveraging Benders decomposition, problem

P can be decomposed into a master problem and a

subproblem. Variables to be optimized in the master

problem are called complicating variables. When

complicating variables are given, the left subproblem

in problem P is easier to solve. For problem P，

assume the complicating variables at t -th iteration to

be et

ij
, then the subproblem can be written as

:S , ,
min = i i

i

c d

d f p

 s.t. (1), (2), (5)-(7)

0,t

ij ij ijf f e ij (8)

Since the solving of complicating variables is

decomposed into master problem, variables in the

above subproblem are all continuous. The problem S

is equivalent to a minimum cost flow problem. Given

environmental monitoring services in IIoT, edge nodes

are responsible for processing data that has the same

priority [3,15]. In other words, the price for discarding

a unit of data is the same (i.e., , ,i jc c i j=).

Therefore, the minimum cost flow problem can be

further transformed into a maximum flow problem [27].

Figure 2 illustrates the equivalence through an edge

network consisting of four nodes.

In Figure 2, the solid line segments are the un-

damaged links, and the dotted line segment between

nodes 2 and 3 represents the damaged link that needs
to be determined whether it can be repaired (i.e.,

0{ , }r rij ij). The source node s and des-

·99· Journal on communications 第 42卷

tination node z are two added virtual nodes. Virtual

links between the source node s and the four edge

nodes represent the maximum computational capacity

of edge nodes, while virtual links between edge nodes

and destination node z is the processing demands of

edge nodes. The value on the edge of each link in

Figure 2 indicates the link capacity. In this way, the

problem S is equivalent to maximizing the sum of

arriving flows at destination node z . The transformed

maximum flow problem can then be effectively solved

by Ford-Fulkerson algorithm [28].

s z

Node
1

 f23

 f13

 f34
 f14

 p3

 p1

 p2

 p4

 r3
 r1

 r2

 r4

Damaged linkUndamaged link Virtual link

Node
3

Node
2

Node
4

Figure 2: Illustration of the equivalent maximum flow problem of the

subproblem

3.2 Optimality cuts and master problem

In Benders decomposition, solutions of the sub-

problem will be transferred into the linear constraints

of the master problem in the form of Benders cutting

planes. Consider feasibility [29], there are always feasi-

ble solutions to the subproblem for any feasible com-

plicating variables. Benders optimality cuts can be

generated by using complementary relaxation of the

subproblem’s dual problem [30]. The corresponding

dual variables 0,t

ij ij E of constraints (3) can then

be extracted from the solutions of the subproblem,

which represent the marginal system increment

brought by repairing link ij .

Theorem 1 The Benders optimality cut at t -th

iteration can be written as

0

()t t t

ij ij ij ij

ij E

f e e

 + − (9)

where is the upper bound of the objective of sub-

prolem S ,
t is the minimum value of objective at

t -th iteration (i.e., minimal data discarding prices at

t -th iteration).

Proof: Please refer to Appendix 1.

Adding obtained the Benders optimality cut into

the constraints of master problem leads to

:M
0,

min +ij ij

ij E

c e

=
e

 s.t. (4), (9)

where is the lower bound of problem P , as mas-

ter problem is a relaxation problem of P .

Different from the subproblem that determines

data migration, computing, and discarding in the sys-

tem, the master problem is responsible for deciding

links to be repaired first (i.e., r) in damaged link set
0 . During the iterations of master problem and sub-

problem, the master problem is solved with given

values of the amount of data migrated, computed, and

discarded that obtained from the subproblem. Solu-

tions to the master problem are then used to enhance

the calculating of the subproblem. Therefore, the sys-

tem can gradually approach the optimal system deci-

sions by iteration.

3.3 Iterative path repair and computation migra-

tion algorithm based on Benders decomposition

Initializing the master problem and submitting it

into the subproblem to search for the optimal solutions

through iterations. If there are no decision variables

that can ensure all constraints of master problem, the

algorithm is terminated and problem P has no solu-

tions. Otherwise, iterations will continue until optimal

configurations are found. Detailed steps of the pro-

posed algorithm are shown in Algorithm 1.

Algorithm 1 Iterative path repair and computation

migration algorithm based on Benders decomposition

Set 1t = and give network parameters

{ , | }ij ijc f ij and { , , | }i i ir p c i .

 1：Initialize the upper bound of algorithm = + ,

lower bound = − , and precision for iteration;

 2：while () / − do

 3： if Master problem M is feasible then

 4： Obtain 0=(e ,)t t

ij ij e and ;

 5： else

 6： break;

 7： Calculate subproblem S and obtain values of

(,)t t

id i= d , (,)t t

ip i= p , data migrated

(,)t t

ijf ij= f , dual variable 0(,)t t

ij ij= μ ,

and minimum objective value
t ;

 8： Update 0min{ , }t t

ij ijij
c e

= + ;

 9： 1t t= + ;

第 4期 Tian H. et al：Recovery Mechanism of Large-scale Damaged Edge Computing Network in Industrial Internet of Things ·100·

10：end while

When Algorithm 1 converges, the system will

repair links on the basis of the results of current itera-

tion t
e . After that, the solution of the subprolem t

f

is used to determine the amount of data migrated be-

tween nodes, t
p is utilized to dynamically adjust

data processed at each edge node, and t
d is used to

discard data that exceeds computation capacity. Note

that is a continuous variable while e is discrete,

the master problem is still a MIP problem. Although it

can be solved by algorithms such as the genetic algo-

rithm with ant colony optimization, the complexity is

high due to the large search space. Besides, the nature

that a new cutting plane keeps monotonicity of the

lower bound but not that for its upper bound. This

non-monotonic bounding property will further aggra-

vates the computational costs of Algorithm 1.

4 Accelerated Benders decomposition algo-

rithm

To solve the problem of Algorithm 1, we further

improve the algorithm with the local branching tech-

nique in the iteration process [31]. The main purpose is

to find a better upper bound during each iteration to

reduce the computation complexity of the master

problem.

4.1 True region and Hamming distance

Algorithm 1 is not a stable algorithm as its solu-

tions fluctuate widely in different feasible domains at

the early stage of iterations, which leads to a slow

convergence rate. For large-scale damage recovery in

IIoT, the large number of variables to be optimized,

especially the introduction of link repair vector e

with an initial search space of
0| |2 E

, will worsen the

convergence problem. Trust region is a good way to

handle the problem [32]. Given that e is a set of 0-1

variables, Hamming distance can be used to limit the

distance between two iterations.

Let (, , ,)t t t t
e d p f be the solutions of t -th it-

erations of problem P , where complicating variables

whose values are 1 can be represented by
0{ | 1, }t t t t

ij ij ije e e= = . The Hamming distance

between (1t +)-th and t -th iterations follows

0

1 1 1

\

(,) (1)
t t

t t t t

ij ij ij ij

ij ij

D e e e e+ + +

= − + (10)

which denotes the number of binary complicating

variables changed during the (1t +)-th iteration.

To speed up convergence, the solution space can

be decomposed into two mutually independent trust

regions as

 1 1(,) ,t t t

ij ijD e e+ + (11)

 1 1(,) 1,t t t

ij ijD e e+ + + (12)

where 1i+ denotes the size of the trust region at the

(1t +)-th iteration, the value of which depends on the

complexity of the master problem and the fluctuating

demand of search range. In local branching, equations

(11) and (12) are named left branch and right branch,

respectively.

4.2 Local branching

With the aid of Hamming distance, the solution

space of problem P can be partitioned into two

closely connected neighborhood spaces based on the

solutions (, , ,)t t t t
e d p f obtained by t –th iteration

of Benders decomposition. Let ,k tke K be the so-

lutions (including feasible tL （ t tL K ） and

non-feasible solutions) computed by t -th iteration of

the local-branching-assisted Benders decomposition.

According to Hamming distance, problem P can be

branched into two independent problems, where the

left-branch problem satisfies

kP ：
0

min = ij ij i i

iij

c e c d

+
e,d, f, p

 s.t. (1)-(7)

 0(,) 1, ,k t

ij ijD e e ij k K (13)

 0(,) +1, ,l t t

ij ijD e e ij l L (14)

 0(,) ,m t

ij ijD e e ij (15)

where (13) represents that e that has been previously

compared will not repeat again, (14) indicates that the

current left branch is a sub-branch of the previous

right branch, and (15) is the constraint of left branch

with m

ije being its current optimal solutions. Similarly,

the right branch can be written as

kP ：
0

min = ij ij i i

iij

c e c d

+
e,d, f, p

 s.t. (1)-(7), (13), (14)

 0(,) 1,m t

ij ijD e e ij + (16)

where (16) is the right branch constraint.

 Let
1 1 1 1(, , ,)k k k k+ + + +

e d p f be the optimal

solutions of left-branch problem
kP and

1k +
 be the

corresponding objective value. The process flow of

the local branching is shown in Algorithm 2.

Loop constraint
maxT is set to avoid possible

non-feasible conditions caused by large Hamming

distance. In a heavily damaged edge computing net-

work, the search space size of link repair decision e

is large. A small trust region size t will be more

·99· Journal on communications 第 42卷

beneficial to improve the computation speed of the

left-branch problem.

In the iteration process, a strict upper bound

min { }tk kk K

= can be obtained. The difficulty of

solving problem P lies in obtaining better lower

bounds. By generating a series of optimality cuts dur-

ing each iteration, the lower bound of Bender decom-

position can be enhanced, thus accelerating the

searching speed.

Algorithm 2 Local branching method

Set 1k = and objective value as
k . Give the values

of t , maximum computing time
maxT and iteration

precision ；

 1 ： Initialize (, , ,)=(, , ,)k k k k t t t t
e d p f e d p f and

obtain corresponding objective value
k ；

 2：while time reaches
maxT or

1() /k k k +−

do

 3： Partition the current branch into left branch
kP

and right branch
kP , and calculate

1k +
 as well as

1 1 1 1(, , ,)k k k k+ + + +
e d p f ；

 4： if
1k k + then

 5： Update { }t tL L k= , { }t tK K k= , and

jump to the right branch;

 6： else

 7： = 1t t +

 8： Update { }t tK K k=

 9： Recalculate left branch
kP ,

1 1 1 1(, , ,)k k k k+ + + +
e d p f , and corresponding

1k +

10： continue

11： end if

12： 1k k= +

13：end while

4.3 Accelerated Benders decomposition based on

local branching

The accelerated Benders decomposition algo-

rithm based on local branching is shown in Algorithm

3. Similar to Algorithm 1, the system determines the

set of links to be repaired based on results of current

iteration
t

e when Algorithm 3 converges. Then, de-

ciding the amount of data migrated, processed, and

discarded according to the results of
t

f ,
t

p , and
t

d .

Different from Algorithm 1, Algorithm 3 ensures that

the upper bound of problem P is strictly decreasing

during iteration through local branching techniques.

For heavily damaged networks, this means that the

search space of link repair decision vector t
e in

master problem M will gradually reduce during it-

erations. Therefore, the searching speed for solutions

will be accelerated as the number of iterations in-

creases.

Only the strongest cutting plane (i.e., one that

minimizes the feasible search space) needs to be add-

ed to the master problem, although a large number of

optimality cuts can be obtained during iterations.

Given the poor performance of convergence at the

initial stage of Benders decomposition, the trust re-

gion can be added only in the initial stage and be re-

moved when iterations tend to be stable.

Algorithm 3 Iterative path repair and computation mi-

gration algorithm based on local-branching-assisted

Benders decomposition

Set 1t = and give network parameters

{ , | }ij ijc f ij and { , , | }i i ir p c i 。

 1：Initialize upper bound of algorithm = + , lower

bound = − , and precision for iteration；

 2：while () / − do

 3： if Master problem M is feasible then

 4： Obtain 0=(e ,)t t

ij ij e and ；

 5： else

 6： break

 7： Calculate subproblem S and obtain values of

(,)t t

id i= d , (,)t t

ip i= p , data migrated

(,)t t

ijf ij= f , dual variables 0(,)t t

ij ij= μ ,

and minimum objective value
t ;

 8： Update 0min{ , }t t

ij ijij
c e

= + ;

 9： Run Algorithm 2 to obtain an augmented upper

bound
k , and a series of Benders optimality cuts

generated by different feasible solutions;

10： 1t t= +

11：end while

It is worth noting that each branching problem

1 2, ,P P during different iterations has the same

structure as problem P . Hence, Algorithm 1 can be

used to solve any branching problem, the results of

which can also be used for solving subsequent

branching problems.

5 Simulations

In this section, the performance of the proposed

第 4期 Tian H. et al：Recovery Mechanism of Large-scale Damaged Edge Computing Network in Industrial Internet of Things ·100·

Iterative path repair and computation migration algo-

rithm based on Benders decomposition (short as

Benders decomposition) together with Iterative path

repair and computation migration algorithm based on

local-branching-assisted Benders decomposition

(short as Accelerated Benders decomposition) are

simulated and analyzed. Simulation parameters and

benchmarks are discussed to illustrate the merits of

the proposed approaches.

5.1 Simulation parameters and benchmarks

We consider an edge computing network con-

sisting of 50N = nodes whose maximum computa-

tion capacity
ip at the early stage of recovery is in-

dependent and uniformly over [10,25] Gbits. Given

the match between computing capacity and demands,

the processing demand of node i (i.e.,
ir) follows a

uniform distribution over [10,25] Gbits. Without loss

of generality, we adopt a random network for the to-

pology before damaging [4] and ensure the connectiv-

ity of every node. Link capacity ijf obeys a uniform

distribution over [5,15] Gbits considering the fluctua-

tion of available computing capacities. The percentage

of damaged links, if not specified, is set as =75%q

to model large-scale damage. The cost for repairing

each damaged link ijc is assumed to be uniformly

distributed over [103, 2×103] dollars, and the price for

discarding a unit of data
ic to be 103 dollars/Gbits.

To verify the merits of the proposed recovery

mechanism, we use three benchmarks for comparison:

(1) Random recovery (RR): Damaged links are

randomly chosen for repairing without any considera-

tions of network topology and dynamics.

(2) Giant component based recovery (GCR) [16]:

Prioritizing the repair of damaged links in the giant

component to ensure the connectivity of the network.

(3) Betweenness centrality based recovery (BCR)
[11]: Prioritizing the repair of damaged links whose

betweenness centrality in pre-damage topology are

higher. The number of links to be repaired is the same

as the proposed approach.

5.2 Convergence rate

Figure 3: Convergence of the two proposed approaches.

Figure 3 shows the convergence performance of

the proposed Benders decomposition algorithm and

the accelerated Benders decomposition algorithm. The

two algorithms can converge within a finite number of

iterations. Note that the iteration number in Figure 3 is

the total number of iterations of the master problem

and subproblem. In each iteration, the computation

complexity is
2(| | | |)O for subproblem and

0 3(| |)O n for master problem, where n is the

number of iterations of the inner loop for solving

master problem. Although the accelerated algorithm

only reduce one iteration compared with Benders de-

composition, the computation time complexity de-

creases
2 0 3(| | | | | |)O n+ , which is significantly

high in heavily damaged networks.

Compared to the proposed Benders decomposi-

tion algorithm, the accelerated approach, thanks to the

assistance of local branching, gets stronger Benders

cuts to speed up convergence and is more adaptive for

large-scale damage recovery. Since the two approach-

es reach the same system cost, they are collectively

referred to as the proposed algorithm in the sequel for

performance comparison.

·99· Journal on communications 第 42卷

5.3 System cost analysis

Figure 4: System cost under different levels of damage.

Figure 5: System cost under different network sizes.

Figure 4 and Figure 5 illustrate the system cost

under different levels of damage and network sizes. In

different conditions, the proposed approach outper-

forms benchmarks as it considers network dynamics

such as computation demands and data migration.

Note that GCR has the highest system cost, even

higher than the RR algorithm, which is in accordance

with realistic network recovery. In realistic systems,

the recovery process always sees a number of inde-

pendently connected clusters, and then the connection

of different clusters occurs to form a giant component
[13].

5.4 Applicability of multiple scenarios

Figure 6: The number of link repaired under different unit data discarding

price.

Figure 7: The amount of data discarded under different unit data discard-

ing price.

Figure 6 and Figure 7 show detailed system cost

information under different data discarding prices.

Given that system cost balances the costs for link re-

pair and data discard, the number of repaired links and

the amount of discarded data appear an inverse rela-

tionship as data discarding price
ic increases. When

ic increases, the system tends to restore more links to

meet computation demands. If
ic is between [1,1.5]

×103 dollars/Gbits, as shown in Figure 7, the system is

sensitive to the change in the discarding price. A small

change of
ic will have a relatively large impact on

system balance. Once
ic exceeds 2×103 dollars/Gbits,

the marginal gain brought by link repair decreases. In

this case, the cost for link repair and the price for data

discard remain stable. Figure 6 and Figure 7 together
demonstrate good scalability and adaptability under

different scenarios with distinct data significance.

第 4期 Tian H. et al：Recovery Mechanism of Large-scale Damaged Edge Computing Network in Industrial Internet of Things ·100·

Figure 8: System cost in different network topologies (N=100）.

To analyze the algorithm performance for differ-

ent network topologies, we extend the topology from

random networks to lattice networks and scale-free

networks. Different from random networks, the de-

grees of nodes in lattice networks are the same, and

scale-free networks follow the power law [33]. As can

be seen from Figure 8, the proposed recovery mecha-

nism outperforms benchmarks in all the topologies,

although fluctuating as topology changes. In other

words, the proposed approach can be applied to mul-

tiple scenarios thanks to the joint analysis of network

topology and system dynamics.

6 Conclusions

In this article, we propose a recovery mechanism

for large-scale damage in edge computing networks of

IIoT. A joint optimization method of link repair and

data migration is presented, which alleviates the con-

tradiction between limited repair resources and large

data computing demands at the early stage of network

recovery. Given the complexity for solving the

NP-hard problem, Benders decomposition is applied

to transform the problem into a master problem and a

subproblem, through the iterations of which we can

gradually approach the optimal solutions. With the aid

of local branching techniques, an accelerated algo-

rithm is designed to improve the speed of convergence

for large-scale network analysis. Simulations reveal

that the proposed approach can achieve a lower sys-

tem cost in recovery compared with existing schemes.

We consider that data processed at different edge

nodes have the same priority, i.e., the same data dis-

carding price, out of fairness concerns. Even so, the

proposed algorithm can be easily extended to scenari-

os with different discarding prices by substituting the

Ford-Fulkerson algorithm with a minimum cost flow

algorithm (e.g., the Dinic algorithm).
In this article, we consider an edge computing

network connected by cable links. For scenarios with

dynamic wireless links, unmanned aerial vehicles

(UAVs) for example, channel capacities change with

the positions of UAVs. It will necessitate the joint

consideration of UAV trajectory and spectrum alloca-

tion, which makes the current complicated problem

even more difficult to solve and thus is left for future

research.

Appendix 1: Proof of Benders optimality cuts

For given 0e ,t

ij ij , from problem P , we

have

 e = min{ | }.t

ij i i

i

c d

d, f, p

（ ） (1)-(3),(5)-(7) (17)

The objective of its equivalent dual problem can

be written as

1

0

e = max{ ()

},

t

ij i i i i ij ij

i ij
t

ij ij ij

ij

r p f

f e

+ +

+

α,β,λ,μ
（ ）

 (18)

where variables (,)i i= α , (,)i i= β ,

1(,)ij ij= λ , and 0(,)ij ij= μ are four

sets of dual variables to be optimized in (18). Assume

that the solutions of the dual problem at t th− itera-

tion to be (,)t t

i i= α , (,)t t

i i= β ,

1(,)t t

ij ij= λ , and 0(,)t t

ij ij= μ ， the

optimal object to be = ()t t

ije , we have

1

0

e ()

.

t t t

ij i i i i ij ij

i iij
t

ij ij ij

ij

r p f

f e

 + +

+

（ ）

 (19)

Operating a linearization in the vicinity of 0e ,t

ij ij

yields

1

0 0

0

e

()

()

= (),

ij
t t t

i i i i ij ij

i iij
t t t t

ij ij ij ij ij ij ij

ij ij
t t t

ij ij ij ij

ij

r p f

f e f e e

f e e

 + +

+ + −

+ −

（ ）

 (20)

which concludes the proof.

References

[1] WU H, TIAN H, NIE G F, et al. Wireless Powered Mobile Edge

Computing for Industrial Internet of Things Systems[J]. IEEE Access,

2020, 8:101539-101549.

[2] Xie G Q, Yang K H, Xu C, et al. Digital twinning based adaptive

development environment for automotive cyber-physical systems[J]

IEEE Transactions on Industrial Informatics, 2021, to be published.

·99· Journal on communications 第 42卷

[3] WU H, LYU X C, TIAN H. Online optimization of wireless powered

mobile-edge computing for heterogeneous industrial internet of

things[J]. IEEE Internet of Things Journal, 2019, 6(6): 9880-9892.

[4] XING L. Cascading Failures in Internet of Things: Review and Per-

spectives on Reliability and Resilience[J]. IEEE Internet of Things

Journal, 2020, 8(1): 44-64.

[5] PROKHORENKI V, BABAR M A. Architectural resilience in cloud,

fog and edge systems: A survey[J]. IEEE ACCESS, 2020, 8:

28078-28095

[6] AYOUBI S, ASSI C, CHEN Y, et al. Restoration methods for cloud

multicast virtual networks[J]. Journal of Network and Computer Ap-

plications, 2017, 78: 180-190.

[7] SATRIA D, PARK D, JO M. Recovery for overloaded mobile edge

computing[J]. Future Generation Computer Systems, 2017, 70:

138-147.

[8] TENG R, LI H B, MIURA R. Dynamic recovery of wireless multi-hop

infrastructure with the autonomous mobile base station[J]. IEEE Ac-

cess, 2016, 4: 627-638.

[9] LI P D, YANG X F. On dynamic recovery of cloud storage system

under advanced persistent threats[J]. IEEE Access, 2019, 7:

103556-103569.

[10] BAXTER G J, Timár G, MENDES J F F. Targeted damage to inter-

dependent networks[J]. Physical Review E, 2018, 98(3): 032307.

[11] BRUMMITT C D, D’SOUZA R M, LEICHT E A. Suppressing cas-

cades of load in interdependent networks[J]. Proceedings of the Na-

tional Academy of Sciences, 2012, 109(12): E680-E689.

[12] MORONE F, MAKSE H A. Influence maximization in complex net-

works through optimal percolation[J]. Nature, 2015, 524(7563): 65-68.

[13] RUDNICK H, MOCARQUER S, ANDRADE E, et al. Disaster man-

agement[J]. IEEE Power and Energy Magazine, 2011, 9(2): 37-45.

[14] PUNZO G, TEWARI A, VASILE M, et al. Engineering resilient com-

plex systems: The necessary shift toward complexity science[J]. IEEE

System Journal, 2020, 14(3): 3865-3874

[15] WU H, TIAN H, FAN S S, et al. Data Age Aware Scheduling for

Wireless Powered Mobile-Edge Computing in Industrial Internet of

Things[J]. IEEE Transactions on Industrial Informatics, 2020, 17(1):

398-408.

[16] SMITH A M, Pósfai M, ROHDEN M, et al. Competitive percolation

strategies for network recovery[J]. Scientific reports, 2019, 9(1): 1-12.

[17] QIN J, MIAO L, Combined Simulated Annealing Algorithm for Lo-

gistics Network Design Problem[C]// 2009 International Workshop on

Intelligent Systems and Applications, Wuhan, China, 2009: 1-4,

[18] KHELIFI M, SAIDI M Y and BOUDJIT S, Genetic algorithm based

model for capacitated network design problem[C]// 2016 24th

In-ternational Conference on Software, Telecommunications and

Computer Networks (SoftCOM), Split, Croatia, 2016: 1-6

[19] LIAN H B, Network Design Problems, Formulations and Solutions[D]

Order No. 3507762 The University of Texas at Dallas, 2012. Ann Ar-

bor: ProQuest. Web. 3 Mar. 2021.

[20] LI D Q, ZHANG Q, ZIO E, et al. Network reliability analysis based on

percolation theory[J]. Reliability Engineering & System Safety, 2015,

142:556–562.

[21] LYU X C, REN C S, NI W L, et al. Distributed optimization of col-

laborative regions in large-scale inhomogeneous fog computing[J].

IEEE Journal on Selected Areas in Communications, 2018, 36(3):

574-586.

[22] ZHAO P T, TIAN H, QIN C, et al. Energy-saving offloading by jointly

allocating radio and computational resources for mobile edge compu-

ting[J]. IEEE Access, 2017, 5: 11255-11268.

[23] ZHAO P T, TIAN H, CHEN K C, et al. Context-aware TDD configu-

ration and resource allocation for mobile edge computing[J]. IEEE

Transactions on Communications, 2019, 68(2): 1118-1131.

[24] CERISOLA LOPEZ DE HARO S, Ramos Galán A. A finite Benders

decomposition algorithm for mixed integer problems, resolution

through parametric Branch and Bound[J]. 2016.

[25] RAHMANIANI R, CRAINIC T G, GENDREAU M, et al. The Bend-

ers decomposition algorithm: A literature review[J]. European Journal

of Operational Research, 2017, 259(3): 801-817.

[26] WU H, TIAN H, NIE G F. Energy-efficient inter-frequency small cell

discovery in dense urban environments[J]. IEEE Wireless Communi-

cations Letters, 2019, 8(1): 41-44.

[27] PEREIRA M V F, PINTO L, CUNHA S H F, et al. A decomposition

approach to automated generation/transmission expansion planning[J].

IEEE Transactions on Power Apparatus and Systems, 1985 (11):

3074-3083.

[28] ERICKSON J. Algorithms[M]. Illinois: Independently Published,

2019.

[29] OLIVEIRA F, GROSSMANN I E, HAMACHER S. Accelerating

Benders stochastic decomposition for the optimization under uncer-

tainty of the petroleum product supply chain[J]. Computers & Opera-

tions Research, 2014, 49: 47-58.

[30] Gan Y. Operations Research [M]. Beijing: Tsinghua University Press,

2013.

[31] FISCHETTI M, LODI A. Local branching[J]. Mathematical program-

ming, 2003, 98(1-3): 23-47.

[32] SANTOSO T, AHMED S, GOETSCHALCKX M, et al. A stochastic

programming approach for supply chain network design under uncer-

tainty[J]. European Journal of Operational Research, 2005, 167(1):

第 4期 Tian H. et al：Recovery Mechanism of Large-scale Damaged Edge Computing Network in Industrial Internet of Things ·100·

96-115.

[33] YU A, Wang N, WU N. Scale-free networks: Characteristics of the

time-variant robustness and vulnerability[J]. IEEE Systems Journal,

2020, to be published.

