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Abstract: Given the limited resources at the early stage of recovery, a failure recovery mechanism of edge computing 

networks considering both computational demands and repair costs was proposed, which intends to tackle the problem of 

the high probability of large-scale cascading failure caused by the interdependence between edge computing networks 

and other subnetworks in industrial Internet of Things (IIoT). Considering the network structure (topology and link ca-

pacities) and system dynamics (computational demands), a joint link recovery selection and computation migration opti-

mization problem was formulated under the conservation of node computing requirements. By leveraging the Benders 

decomposition algorithm, the NP-hard problem was transformed into a main problem and a subproblem, which were in-

terdependent and could be solved in polynomial time through the approximation of cutting planes. A local branching 

method was further introduced to guarantee the non-increasing nature of the Benders upper bound, thus accelerating the 

convergence of Benders decomposition. Simulation results demonstrate that the proposed mechanism outperforms the 

conventional topology-based recovery mechanism in system cost, and can perform well in multiple scenarios. 
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1  Introduction 

Industrial Internet of Things (IIoT) is envisioned 

as an important booster for the intelligent transfor-

mation of global industrial systems. With hundreds of 

millions of seamlessly deployed sensors, collectors 

and controllers, IIoT participates in the full cycle of 

simulation, prediction and control of manufacturing 

processes [1]. As the "brain" of IIoT, edge computing 

networks provide more sufficient computing capabil-

ity for resource-limited wireless devices, reduce pro-

cessing and transmission latency, and lay a solid 

foundation for enterprise applications such as digital 

twin [2] and virtual reality [3]. Meanwhile, cables be-

tween edge computing nodes facilitate the migration 

of computing tasks, effectively alleviating the problem 

of unevenly distributed computing resources caused 

by the temporary- and spatial- fluctuations of compu-

ting demands in IIoT. 

The stability of edge computing networks is crit-

ical for efficient operations of IIoT. Once the "brain" 

is damaged, IIoT will lose control of "limbs" (e.g., 

supply chain monitoring, data visualization analysis). 

However, the stability of the edge computing network 

in IIoT faces both internal and external challenges: 1) 

edge computing networks are coupled with multiple 

sub-networks in IIoT such as power grids and control 

systems, forming an interdependent network that is 

highly vulnerable [4]; 2) unpredictable disruptions such 

as natural disasters and human attacks test the robust-

ness of edge computing networks twenty-four seven [5]. 

To address these challenges, on the one hand, edge 

computing networks can enhance its reliability to 

adaptively cope with various network fluctuations and 

prevent possible network failures; on the other hand, it 

is also of vital importance to explore emergent recov-

ery mechanisms after network damage, such that the 

system performance can be restored to pre-damage 

level as soon as possible. 

Although the design of recovery mechanisms is 

crucial for network sustainability and stability, there 

are limited efforts that are targeting IIoT. Fortunately, 

given the similarity in network topology and system 

dynamics, some existing network recovery strategies 

can still provide some references for the design of 

recovery mechanisms for edge computing networks. 

Currently, recovery studies mainly focus on local 

damage scenarios where only part of the systems are 

affected. In reference [6], Ayoubi et al formulated the 

repair of a single node or link as an integer linear pro-

gramming problem, and proposed a data migra-

tion-aware recovery model to achieve well balance 

between service disruption rate and repair cost. Fur-

thermore, the authors of reference [7-8] considered the 

problem of impaired connectivity in a multi-node 

failure scenario, and proposed that the connectivity of 

the network could be ensured by using users as relays 

through a device-to-device (D2D) manner [7] or by 

using mobile access nodes [8]. Unlike the 
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above-mentioned works, the authors of reference [9] 

considered the persistent network threat under attack, 

and transformed the network dynamic recovery prob-

lem into a differential game theory problem. The 

problem was then solved with necessary conditions 

for Nash equilibrium and a design of competitive 

strategy profile. However, the above studies for local 

network recovery often ignore the dynamic character-

istics among global nodes/links (e.g., flow migration) 

and practical constraints (e.g., cable layout cannot be 

changed), which makes them hard to be extended to 

more likely large-scale network damage scenarios in 

IIoT. 

After large-scale network damage, recovery re-

sources (e.g., repair crews and replaceable devices) 

are often limited at an early stage. How to effectively 

balance the limited system repair resources and the 

need for system performance recovery is an urgent 

problem for IIoT. Existing research mainly focuses on 

the analysis of network topology. Reference [10] ar-

gued that high-degree nodes have a more important 

role in network connectivity and need to be repaired 

with priority. Similarly, study [11] considered that links 

with large betweenness centrality should be repaired 

first in case of link damage. Through real-world big 

data analysis, the authors of reference [12] found that 

weak nodes, i.e., low-degree nodes that are connected 

to multiple high-degree nodes, outrank the influence 

of other nodes in network connectivity and their repair 

priority should be the highest. However, all these 

works based on network connectivity that try to en-

large the maximal connected subgraph are static net-

work structure analyses, ignoring the dynamic char-

acteristics of the network. Large-scale network recov-

ery in real environments will not form a maximal 

connected graph until multiple mutually independent 

subgraphs have been generated [13]. Therefore, engi-

neering analysis needs to consider more device details 

and real transmission dynamics [14]. This type of prob-

lem is also known as the network design problem 

(NDP). Given network dynamics features, the com-

plexity of NDP is high, since it is at least a 

NP-complete problem. Using dynamic programming 

algorithms to solve the problem will cause the prob-

lem of curse of dimensionality [15]. To address the 

problem, a more solvable heuristic algorithm was 

proposed in reference [16]. Nevertheless, it cannot 

provide satisfactory performance guarantees given its 

large variance results from the lack of macro network 

analysis. Analogously, both simulated annealing algo-

rithms [17] and genetic algorithms [18] face the same 

dilemma as heuristics and are easily trapped at local 

optimal solutions. Although hill climbing algorithms 
[19] and gradient descent algorithms [20] can easily jump 

out of the local optimal point and greatly reduce the 

computational complexity of NDP, the optimality of 

solutions still cannot be ensured. 

Given the above dilemmas, we propose a recov-

ery mechanism for large-scale damaged edge compu-

ting networks in IIoT. Consider network vulnerability 

caused by interdependence among IIoT sub-networks, 

we explore structural characteristics (topology and 

link capacity) and system dynamics (computation de-

mands of nodes) of large-scale damaged edge compu-

ting networks. Distinct from existing studies, a joint 

optimization problem of link repair selection and 

computation migration is designed to balance compu-

tation demands and repair costs at the early stage of 

network recovery. The key contributions are summa-

rized as follows. 

(1) We propose a network recovery mechanism 

for large-scale damaged edge computing networks. 

Network structure and dynamics are jointly consid-

ered to provide a repair strategy and resource sched-

uling framework for early-stage network recovery. 

(2) Based on Benders decomposition, the original 

complicated mixed-integer programming (MIP) prob-

lem for recovery decisions is transformed into a mas-

ter problem and a subproblem. The optimal system 

recovery strategies can be obtained by solving the two 

problems iteratively. To solve the subproblem, a virtu-

al source node and a virtual destination node are de-

signed, which transfer the problem into a maximum 

flow problem. 

(3) We develop an accelerated Benders decom-

position algorithm based on local branching. With the 

help of Hamming distance, the algorithm can reduce 

the search space and improve convergence. 

Simulations reveal that the proposed recovery 

mechanism has better convergence speed and lower 

system costs. Compared with existing schemes, the 

proposed approach outperforms benchmarks in multi-

ple network topologies, proving its scalability and 

adaptability for IIoT. 

2  System Model 

We consider an edge network in IIoT that con-

sists of N edge nodes, which are indexed by 

{1,2, , }i N  = . Edge nodes are connected by 

 cable links, where  is the set of links in the 

system. Cable links are often reliable and only need a 

small amount of complexity for channel coding, thus 

are considered error-free [21]. The notations used in 

this article are summarized in Table 1. 

Note that edge computing networks in realistic 

IIoT is often hybrid link transmission networks con-
sisting of wired links and wireless links. Given that 

wireless links are hard to impair and their repair costs 
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are relatively small, only recovery of wired links are 

considered. Nevertheless, if the deep fading of 

short-term wireless links is neglected, wireless links 

can be seen as non-damageable wired links with con-

stant capacity (without considering the reallocation of 

bandwidths). Therefore, the hybrid transmission net-

work can be simplified as an equivalent wired net-

work, and the proposed mechanism is still applicable. 

Table 1: Summary of notations 
Notation Description 

N  Number of edge nodes 

 Set of links 
0  Set of damaged links 
1  Set of undamaged links 

q  Percentage of damaged links 

ijc  Repair cost for link ij  

ic  Price for discarding one bit data of node i  

ip  Computed data volume at node i  

ip  Computation capacity of node i  

ir  Processing demand of node i  

id  Discarded data of node i  

ijf  Data migrated from node i  to node j  

ijf  Capacity of link ij  

ije  Decision variable for repairing link ij  

t  Number of iterations of Benders decomposition 

t  
Optimality of objective during t -th iteration of the 

subproblem 

t  
Threshold for t -th iteration of the left-branch prob-

lem 

Edge computing nodes are equipped with com-

plicated self-protection mechanisms (e.g., overheating 

protection) and are hard to disrupt. Wired links, on the 

contrary, are often the trigger for large-scale damage. 

Let q  denote the percentage of damaged links in the 

system, 0  collect the set of those links, and 
1 0= \  be the set of workable links. The damage 

of links leads to the re-distribution of balanced data 

migration between nodes. What’s worse, it may result 

in computing islands (nodes that are separated 

from other nodes, e.g., node 1 in Figure 1)，breaking 

the match between computing capacity and processing 

requirements. Restricted by the limited resources 

(such as number of repair crews and replaceable 

spares) at the early stage of recovery, restoring all 

damaged links simultaneously is impossible. To re-

cover network functions as soon as possible, a set of 

damaged links can be repaired first, denoted by 
0r r （ ）, according to computing demand dis-

tributions. For any link 
0ij , the cost ijc  for 

maintain, overhaul, and replace is different, given dif-

ferent positions and scale of damage. 

Let 
ir  denote the processing demand of edge 

nod i , 
ip  be the corresponding amount of 

computed data. Nota that 
ir  is the total volume of 

data that arrived at node i  at the early stage of re-

covery. For a given scenario, it is a constant that will 

not change with time, the value of which can be esti-

mated by historical computing demands. The pro-

cessed data volume of edge node i  satisfies 

 0 , ,i ip p i     (1) 

where 
ip  is the computation capacity of node i . 

Damaged link

Undamaged link

Edge node 4f24

Edge node 2

Edge node 3Edge node 1

f23 e23

 

Figure 1:  Topology illustration of a damaged edge computing network 

Let ijf  be the amount of data migrated between 

node i  and node \{ }j i . When 0ijf  , data is 

migrated from node i  to node j ; Otherwise, data 

flow is from node j  to node i . Given the link ca-

pacity ijf , data transformed on link ij  follows 

 ,ij ijf f ij    (2) 

For damaged links, the amount of data migrated is not 

only determined by the link capacity but also by the 

repair decision, i.e., 

 0, ,ij ij ijf f e ij    (3) 

where 

 0e {0,1}, ,ij ij    (4) 

in which e =1ij  represents that link ij  is given pri-

ority in repairing (i.e., 
rij ); e =0ij  means link 

ij  has not been restored and the actual migrated data 

is 0ijf = . Besides, for any link ij , the symmetry of 

flows leads to 

 , .ij jif f ij= −    (5) 

When links in set r  are repaired, data pro-

cessed at or migrated from node i  satisfies 

 
0 1

,i ij ij i i

ij E ij E

p f f d r i
 

+ + + =   ，  (6) 



第 4期 Tian H. et al：Recovery Mechanism of Large-scale Damaged Edge Computing Network in Industrial Internet of Things ·100· 

 

where 
ir  is the computing demands of node i , and 

 0,id i    (7) 

represents the data discarded by node i  due to back-

log caused by the limited computation capacity of the 

edge node. 

Repairing as many links as possible can reduce 

the amount of data discarded and improve system 

performance, but will result in large repair costs. Re-

covering a small number of links, however, may cause 

data backlogs to increase and the amount of data dis-

carded to surge. For quantitative analysis, network 

performance is measured by data discarding prices. 

The larger the prices are, the worse the network per-

formance is. To balance the link repair costs and net-

work performance (data discarding prices) at the early 

stage of recovery, a minimization problem of system 

cost can be formulated as 

P : 
0

min = ij ij i i

iij

c e c d


+ 
e,d, f, p

  

    s.t.  (1)-(7)  

where ijc  is the repair cost for link 
0ij , 

ic  de-

notes the price for discarding a unit of data at edge 

node i . Link repair decision vector 
0( , )ije ij=  e , data discarding decision vector 

( , )id i=  d ， data flow distribution vector 

( , )ijf ij=  f , and local processed data vector 

( , )ip i=  p  are four sets of variables to be op-

timized. In problem P , system cost consists of two 

parts: link repair costs and data discarding prices. To 

some extent, the link repair costs 0 ij ijj
c e


  and data 

discarding prices 
i i ic d  are conflicting. The in-

crease of one will lead to the decrease of the other. 

The combination of them can effectively balance the 

impacts of both in recovery. When link repair cost ijc  

is large, the significance of data is relatively small. As 

a result, the system would prefer to recover a small 

number of links and drop the data in backlogs. Other-

wise, system is inclined to increase the number of 

links to be repaired and keep collected data as much 

as possible when 
ic  is high. 

 Problem P  is a MIP problem that is NP-hard. 

Given the large number of  variables to be optimized, 

there is no algorithm that can solve the problem opti-

mally within polynomial time. Currently, there are 

three possible methods that can be used to handle this 

type of problem: heuristic algorithms [22], approxima-

tion algorithms [23] and exact algorithms [24]. Heuristic 

algorithms respond fast and are simple to apply, but 

lack rigorous theoretical proof and often have large 

deviations from optimal solutions. Approximation 

algorithms, such as the relaxed variable splitting algo-

rithm, are limited by the size of solutions. Unlike the 

two types of algorithms, exact algorithms, the cutting 

plane algorithm for example, can explore the optimal 

solutions well by iterative update of cutting planes and 

are widely used in solving MIP. 

3  Algorithm design 

Benders decomposition [25], a classical cutting 

plane algorithm, is widely used to deal with realistic 

MIP problems (e.g., locomotive scheduling, airline 

route planning). It will neither significantly increase 

the number of iterations with the rise of the size of 

variable set as in branch-and-bound method, nor occur 

curse of dimensionality problem as in dynamic pro-

gramming. Moreover, it will not cause large variance 

like what heuristic methods or simulated annealing 

algorithms do [26]. In this section, an efficient approach 

is proposed to solve problem P  based on Benders 

decomposition. 

3.1  Subproblem and reformulation 

By leveraging Benders decomposition, problem 

P  can be decomposed into a master problem and a 

subproblem. Variables to be optimized in the master 

problem are called complicating variables. When 

complicating variables are given, the left subproblem 

in problem P  is easier to solve. For problem P，

assume the complicating variables at t -th iteration to 

be et

ij
, then the subproblem can be written as 

:S  , ,
min = i i

i

c d



d f p

  

 s.t. (1), (2), (5)-(7)  

 
0,t

ij ij ijf f e ij    (8) 

Since the solving of complicating variables is 

decomposed into master problem, variables in the 

above subproblem are all continuous. The problem S  

is equivalent to a minimum cost flow problem. Given 

environmental monitoring services in IIoT, edge nodes 

are responsible for processing data that has the same 

priority [3,15]. In other words, the price for discarding 

a unit of data is the same (i.e., , ,i jc c i j=   ). 

Therefore, the minimum cost flow problem can be 

further transformed into a maximum flow problem [27]. 

Figure 2 illustrates the equivalence through an edge 

network consisting of four nodes. 

In Figure 2, the solid line segments are the un-

damaged links, and the dotted line segment between 

nodes 2 and 3 represents the damaged link that needs 
to be determined whether it can be repaired (i.e., 

0{ , }r rij ij  ). The source node s  and des-
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tination node z  are two added virtual nodes. Virtual 

links between the source node s  and the four edge 

nodes represent the maximum computational capacity 

of edge nodes, while virtual links between edge nodes 

and destination node z  is the processing demands of 

edge nodes. The value on the edge of each link in 

Figure 2 indicates the link capacity. In this way, the 

problem S  is equivalent to maximizing the sum of 

arriving flows at destination node z . The transformed 

maximum flow problem can then be effectively solved 

by Ford-Fulkerson algorithm [28]. 

 

s z

Node
1

 f23

 f13

 f34
 f14

 p3

 p1

 p2

 p4

 r3
 r1

 r2

 r4

Damaged linkUndamaged link Virtual link

Node
3

Node
2

Node
4

Figure 2:  Illustration of the equivalent maximum flow problem of the 

subproblem 

3.2  Optimality cuts and master problem 

In Benders decomposition, solutions of the sub-

problem will be transferred into the linear constraints 

of the master problem in the form of Benders cutting 

planes. Consider feasibility [29], there are always feasi-

ble solutions to the subproblem for any feasible com-

plicating variables. Benders optimality cuts can be 

generated by using complementary relaxation of the 

subproblem’s dual problem [30]. The corresponding 

dual variables 0,t

ij ij E   of constraints (3) can then 

be extracted from the solutions of the subproblem, 

which represent the marginal system increment 

brought by repairing link ij . 

Theorem 1  The Benders optimality cut at t -th 

iteration can be written as 

 
0

( )t t t

ij ij ij ij

ij E

f e e  


 + −  (9) 

where   is the upper bound of the objective of sub-

prolem S , 
t  is the minimum value of objective at 

t -th iteration (i.e., minimal data discarding prices at 

t -th iteration). 

Proof: Please refer to Appendix 1. 

Adding obtained the Benders optimality cut into 

the constraints of master problem leads to 

:M  
0,

min +ij ij

ij E

c e

 



= 
e

  

   s.t. (4), (9)  

where   is the lower bound of problem P , as mas-

ter problem is a relaxation problem of P . 

Different from the subproblem that determines 

data migration, computing, and discarding in the sys-

tem, the master problem is responsible for deciding 

links to be repaired first (i.e., r ) in damaged link set 
0 . During the iterations of master problem and sub-

problem, the master problem is solved with given 

values of the amount of data migrated, computed, and 

discarded that obtained from the subproblem. Solu-

tions to the master problem are then used to enhance 

the calculating of the subproblem. Therefore, the sys-

tem can gradually approach the optimal system deci-

sions by iteration.  

3.3  Iterative path repair and computation migra-

tion algorithm based on Benders decomposition 

Initializing the master problem and submitting it 

into the subproblem to search for the optimal solutions 

through iterations. If there are no decision variables 

that can ensure all constraints of master problem, the 

algorithm is terminated and problem P  has no solu-

tions. Otherwise, iterations will continue until optimal 

configurations are found. Detailed steps of the pro-

posed algorithm are shown in Algorithm 1. 

Algorithm 1  Iterative path repair and computation 

migration algorithm based on Benders decomposition 

Set 1t = and give network parameters 

{ , | }ij ijc f ij   and { , , | }i i ir p c i  . 

 1：Initialize the upper bound of algorithm  = + , 

lower bound  = − , and precision   for iteration; 

 2：while ( ) /   −   do 

 3：  if Master problem M  is feasible then 

 4：    Obtain 0=(e , )t t

ij ij e  and  ; 

 5：  else 

 6：    break; 

 7：  Calculate subproblem S  and obtain values of 

( , )t t

id i=  d , ( , )t t

ip i=  p , data migrated 

( , )t t

ijf ij=  f , dual variable 0( , )t t

ij ij=  μ , 

and minimum objective value 
t ; 

 8：  Update 0min{ , }t t

ij ijij
c e  


= + ; 

 9：  1t t= + ; 
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10：end while 

When Algorithm 1 converges, the system will 

repair links on the basis of the results of current itera-

tion t
e . After that, the solution of the subprolem t

f  

is used to determine the amount of data migrated be-

tween nodes, t
p  is utilized to dynamically adjust 

data processed at each edge node, and t
d  is used to 

discard data that exceeds computation capacity. Note 

that   is a continuous variable while e  is discrete, 

the master problem is still a MIP problem. Although it 

can be solved by algorithms such as the genetic algo-

rithm with ant colony optimization, the complexity is 

high due to the large search space. Besides, the nature 

that a new cutting plane keeps monotonicity of the 

lower bound but not that for its upper bound. This 

non-monotonic bounding property will further aggra-

vates the computational costs of Algorithm 1.  

4  Accelerated Benders decomposition algo-

rithm 

To solve the problem of Algorithm 1, we further 

improve the algorithm with the local branching tech-

nique in the iteration process [31]. The main purpose is 

to find a better upper bound during each iteration to 

reduce the computation complexity of the master 

problem.  

4.1  True region and Hamming distance 

Algorithm 1 is not a stable algorithm as its solu-

tions fluctuate widely in different feasible domains at 

the early stage of iterations, which leads to a slow 

convergence rate. For large-scale damage recovery in 

IIoT, the large number of variables to be optimized, 

especially the introduction of link repair vector e  

with an initial search space of 
0| |2 E

, will worsen the 

convergence problem. Trust region is a good way to 

handle the problem [32]. Given that e  is a set of 0-1 

variables, Hamming distance can be used to limit the 

distance between two iterations. 

Let ( , , , )t t t t
e d p f  be the solutions of t -th it-

erations of problem P , where complicating variables 

whose values are 1 can be represented by 
0{ | 1, }t t t t

ij ij ije e e= =  . The Hamming distance 

between ( 1t + )-th and t -th iterations follows 

 
0

1 1 1

\

( , ) (1 )
t t

t t t t

ij ij ij ij

ij ij

D e e e e+ + +

 

= − +   (10) 

which denotes the number of binary complicating 

variables changed during the ( 1t + )-th iteration. 

To speed up convergence, the solution space can 

be decomposed into two mutually independent trust 

regions as 

 1 1( , ) ,t t t

ij ijD e e+ +   (11) 

 1 1( , ) 1,t t t

ij ijD e e+ +  +  (12) 

where 1i+  denotes the size of the trust region at the 

( 1t + )-th iteration, the value of which depends on the 

complexity of the master problem and the fluctuating 

demand of search range. In local branching, equations 

(11) and (12) are named left branch and right branch, 

respectively.  

4.2  Local branching 

With the aid of Hamming distance, the solution 

space of problem P  can be partitioned into two 

closely connected neighborhood spaces based on the 

solutions ( , , , )t t t t
e d p f  obtained by t –th iteration 

of Benders decomposition. Let ,k tke K  be the so-

lutions (including feasible tL （ t tL K ）  and 

non-feasible solutions) computed by t -th iteration of 

the local-branching-assisted Benders decomposition. 

According to Hamming distance, problem P  can be 

branched into two independent problems, where the 

left-branch problem satisfies 

kP ： 
0

min = ij ij i i

iij

c e c d


+ 
e,d, f, p

  

  s.t. (1)-(7)  

 0( , ) 1, ,k t

ij ijD e e ij k   K  (13) 

 0( , ) +1, ,l t t

ij ijD e e ij l    L  (14) 

 0( , ) ,m t

ij ijD e e ij     (15) 

where (13) represents that e  that has been previously 

compared will not repeat again, (14) indicates that the 

current left branch is a sub-branch of the previous 

right branch, and (15) is the constraint of left branch 

with m

ije  being its current optimal solutions. Similarly, 

the right branch can be written as 

kP ： 
0

min = ij ij i i

iij

c e c d


+ 
e,d, f, p

  

  s.t. (1)-(7), (13), (14)  

 0( , ) 1,m t

ij ijD e e ij  +    (16) 

where (16) is the right branch constraint. 

 Let 
1 1 1 1( , , , )k k k k+ + + +

e d p f  be the optimal 

solutions of left-branch problem 
kP  and 

1k +
 be the 

corresponding objective value. The process flow of 

the local branching is shown in Algorithm 2.  

Loop constraint 
maxT  is set to avoid possible 

non-feasible conditions caused by large Hamming 

distance. In a heavily damaged edge computing net-

work, the search space size of link repair decision e  

is large. A small trust region size t  will be more 
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beneficial to improve the computation speed of the 

left-branch problem. 

In the iteration process, a strict upper bound 

min { }tk kk K
 


=  can be obtained. The difficulty of 

solving problem P  lies in obtaining better lower 

bounds. By generating a series of optimality cuts dur-

ing each iteration, the lower bound of Bender decom-

position can be enhanced, thus accelerating the 

searching speed. 

 

Algorithm 2 Local branching method 

Set 1k =  and objective value as 
k . Give the values 

of t , maximum computing time 
maxT  and iteration 

precision ； 

 1 ： Initialize ( , , , )=( , , , )k k k k t t t t
e d p f e d p f  and 

obtain corresponding objective value 
k ； 

 2：while time reaches 
maxT  or 

1( ) /k k k   +−   

do 

 3：  Partition the current branch into left branch 
kP  

and right branch
kP , and calculate 

1k +
 as well as 

1 1 1 1( , , , )k k k k+ + + +
e d p f ； 

 4：  if 
1k k +   then 

 5：    Update { }t tL L k= , { }t tK K k= , and 

jump to the right branch; 

 6：  else 

 7：    = 1t t  +  

 8：    Update { }t tK K k=  

 9：    Recalculate left branch 
kP , 

1 1 1 1( , , , )k k k k+ + + +
e d p f , and corresponding 

1k +
 

10：    continue 

11：  end if 

12：  1k k= +  

13：end while 

4.3  Accelerated Benders decomposition based on 

local branching 

The accelerated Benders decomposition algo-

rithm based on local branching is shown in Algorithm 

3. Similar to Algorithm 1, the system determines the 

set of links to be repaired based on results of current 

iteration 
t

e  when Algorithm 3 converges. Then, de-

ciding the amount of data migrated, processed, and 

discarded according to the results of 
t

f , 
t

p , and 
t

d . 

Different from Algorithm 1, Algorithm 3 ensures that 

the upper bound of problem P  is strictly decreasing 

during iteration through local branching techniques. 

For heavily damaged networks, this means that the 

search space of link repair decision vector t
e  in 

master problem M  will gradually reduce during it-

erations. Therefore, the searching speed for solutions 

will be accelerated as the number of iterations in-

creases. 

Only the strongest cutting plane (i.e., one that 

minimizes the feasible search space) needs to be add-

ed to the master problem, although a large number of 

optimality cuts can be obtained during iterations. 

Given the poor performance of convergence at the 

initial stage of Benders decomposition, the trust re-

gion can be added only in the initial stage and be re-

moved when iterations tend to be stable. 

 

Algorithm 3 Iterative path repair and computation mi-

gration algorithm based on local-branching-assisted 

Benders decomposition 

Set 1t =  and give network parameters 

{ , | }ij ijc f ij   and { , , | }i i ir p c i  。 

 1：Initialize upper bound of algorithm  = + , lower 

bound  = − , and precision   for iteration； 

 2：while ( ) /   −   do 

 3：  if Master problem M  is feasible then 

 4：    Obtain 0=(e , )t t

ij ij e  and ； 

 5：  else 

 6：    break 

 7：  Calculate subproblem S  and obtain values of 

( , )t t

id i=  d , ( , )t t

ip i=  p , data migrated 

( , )t t

ijf ij=  f , dual variables 0( , )t t

ij ij=  μ , 

and minimum objective value 
t ; 

 8：  Update 0min{ , }t t

ij ijij
c e  


= + ; 

 9：  Run Algorithm 2 to obtain an augmented upper 

bound 
k , and a series of Benders optimality cuts 

generated by different feasible solutions; 

10：  1t t= +  

11：end while 

 

It is worth noting that each branching problem 

1 2, ,P P  during different iterations has the same 

structure as problem P . Hence, Algorithm 1 can be 

used to solve any branching problem, the results of 

which can also be used for solving subsequent 

branching problems. 

5  Simulations 

In this section, the performance of the proposed 
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Iterative path repair and computation migration algo-

rithm based on Benders decomposition (short as 

Benders decomposition) together with Iterative path 

repair and computation migration algorithm based on 

local-branching-assisted Benders decomposition 

(short as Accelerated Benders decomposition) are 

simulated and analyzed. Simulation parameters and 

benchmarks are discussed to illustrate the merits of 

the proposed approaches. 

5.1 Simulation parameters and benchmarks 

We consider an edge computing network con-

sisting of 50N =  nodes whose maximum computa-

tion capacity 
ip  at the early stage of recovery is in-

dependent and uniformly over [10,25] Gbits. Given 

the match between computing capacity and demands, 

the processing demand of node i  (i.e., 
ir ) follows a 

uniform distribution over [10,25] Gbits. Without loss 

of generality, we adopt a random network for the to-

pology before damaging [4] and ensure the connectiv-

ity of every node. Link capacity ijf  obeys a uniform 

distribution over [5,15] Gbits considering the fluctua-

tion of available computing capacities. The percentage 

of damaged links, if not specified, is set as =75%q  

to model large-scale damage. The cost for repairing 

each damaged link ijc  is assumed to be uniformly 

distributed over [103, 2×103] dollars, and the price for 

discarding a unit of data 
ic  to be 103 dollars/Gbits. 

To verify the merits of the proposed recovery 

mechanism, we use three benchmarks for comparison: 

(1) Random recovery (RR): Damaged links are 

randomly chosen for repairing without any considera-

tions of network topology and dynamics. 

(2) Giant component based recovery (GCR) [16]: 

Prioritizing the repair of damaged links in the giant 

component to ensure the connectivity of the network. 

(3) Betweenness centrality based recovery (BCR) 
[11]: Prioritizing the repair of damaged links whose 

betweenness centrality in pre-damage topology are 

higher. The number of links to be repaired is the same 

as the proposed approach.  

5.2 Convergence rate 

 
Figure 3: Convergence of the two proposed approaches. 

Figure 3 shows the convergence performance of 

the proposed Benders decomposition algorithm and 

the accelerated Benders decomposition algorithm. The 

two algorithms can converge within a finite number of 

iterations. Note that the iteration number in Figure 3 is 

the total number of iterations of the master problem 

and subproblem. In each iteration, the computation 

complexity is 
2(| | | | )O  for subproblem and 

0 3( | | )O n  for master problem, where n  is the 

number of iterations of the inner loop for solving 

master problem. Although the accelerated algorithm 

only reduce one iteration compared with Benders de-

composition, the computation time complexity de-

creases 
2 0 3(| | | | | | )O n+ , which is significantly 

high in heavily damaged networks.  

Compared to the proposed Benders decomposi-

tion algorithm, the accelerated approach, thanks to the 

assistance of local branching, gets stronger Benders 

cuts to speed up convergence and is more adaptive for 

large-scale damage recovery. Since the two approach-

es reach the same system cost, they are collectively 

referred to as the proposed algorithm in the sequel for 

performance comparison. 
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5.3 System cost analysis 

 
Figure 4:  System cost under different levels of damage. 

 

 

Figure 5:  System cost under different network sizes. 

Figure 4 and Figure 5 illustrate the system cost 

under different levels of damage and network sizes. In 

different conditions, the proposed approach outper-

forms benchmarks as it considers network dynamics 

such as computation demands and data migration. 

Note that GCR has the highest system cost, even 

higher than the RR algorithm, which is in accordance 

with realistic network recovery. In realistic systems, 

the recovery process always sees a number of inde-

pendently connected clusters, and then the connection 

of different clusters occurs to form a giant component 
[13]. 

5.4 Applicability of multiple scenarios 

 

Figure 6:  The number of link repaired under different unit data discarding 

price. 

 

Figure 7:  The amount of data discarded under different unit data discard-

ing price. 

Figure 6 and Figure 7 show detailed system cost 

information under different data discarding prices. 

Given that system cost balances the costs for link re-

pair and data discard, the number of repaired links and 

the amount of discarded data appear an inverse rela-

tionship as data discarding price 
ic  increases. When 

ic  increases, the system tends to restore more links to 

meet computation demands. If 
ic  is between [1,1.5]

×103 dollars/Gbits, as shown in Figure 7, the system is 

sensitive to the change in the discarding price. A small 

change of 
ic  will have a relatively large impact on 

system balance. Once 
ic  exceeds 2×103 dollars/Gbits, 

the marginal gain brought by link repair decreases. In 

this case, the cost for link repair and the price for data 

discard remain stable. Figure 6 and Figure 7 together 
demonstrate good scalability and adaptability under 

different scenarios with distinct data significance. 



第 4期 Tian H. et al：Recovery Mechanism of Large-scale Damaged Edge Computing Network in Industrial Internet of Things ·100· 

 

 
Figure 8:  System cost in different network topologies (N=100）. 

To analyze the algorithm performance for differ-

ent network topologies, we extend the topology from 

random networks to lattice networks and scale-free 

networks. Different from random networks, the de-

grees of nodes in lattice networks are the same, and 

scale-free networks follow the power law [33]. As can 

be seen from Figure 8, the proposed recovery mecha-

nism outperforms benchmarks in all the topologies, 

although fluctuating as topology changes. In other 

words, the proposed approach can be applied to mul-

tiple scenarios thanks to the joint analysis of network 

topology and system dynamics.  

6  Conclusions 

In this article, we propose a recovery mechanism 

for large-scale damage in edge computing networks of 

IIoT. A joint optimization method of link repair and 

data migration is presented, which alleviates the con-

tradiction between limited repair resources and large 

data computing demands at the early stage of network 

recovery. Given the complexity for solving the 

NP-hard problem, Benders decomposition is applied 

to transform the problem into a master problem and a 

subproblem, through the iterations of which we can 

gradually approach the optimal solutions. With the aid 

of local branching techniques, an accelerated algo-

rithm is designed to improve the speed of convergence 

for large-scale network analysis. Simulations reveal 

that the proposed approach can achieve a lower sys-

tem cost in recovery compared with existing schemes. 

We consider that data processed at different edge 

nodes have the same priority, i.e., the same data dis-

carding price, out of fairness concerns. Even so, the 

proposed algorithm can be easily extended to scenari-

os with different discarding prices by substituting the 

Ford-Fulkerson algorithm with a minimum cost flow 

algorithm (e.g., the Dinic algorithm). 
In this article, we consider an edge computing 

network connected by cable links. For scenarios with 

dynamic wireless links, unmanned aerial vehicles 

(UAVs) for example, channel capacities change with 

the positions of UAVs. It will necessitate the joint 

consideration of UAV trajectory and spectrum alloca-

tion, which makes the current complicated problem 

even more difficult to solve and thus is left for future 

research. 

Appendix 1: Proof of Benders optimality cuts 

For given 0e ,t

ij ij , from problem P , we 

have 

 e = min{  | }.t

ij i i

i

c d



d, f, p

（ ）  (1)-(3),(5)-(7)  (17) 

The objective of its equivalent dual problem can 

be written as 

 
1

0

e = max{ ( )

},

t

ij i i i i ij ij

i ij
t

ij ij ij

ij

r p f

f e

   


 



+ +

+

 



α,β,λ,μ
（ ）

 (18) 

where variables ( , )i i=  α , ( , )i i=  β , 

1( , )ij ij=  λ , and 0( , )ij ij=  μ are four 

sets of dual variables to be optimized in (18). Assume 

that the solutions of the dual problem at t th−  itera-

tion to be ( , )t t

i i=  α , ( , )t t

i i=  β , 

1( , )t t

ij ij=  λ , and 0( , )t t

ij ij=  μ ， the 

optimal object to be = ( )t t

ije  , we have   

 
1

0

e ( )

.

t t t

ij i i i i ij ij

i iij
t

ij ij ij

ij

r p f

f e

   


 



 + +

+

 



（ ）

 (19) 

Operating a linearization in the vicinity of 0e ,t

ij ij  

yields 

 

1

0 0

0

e

( )

( )

= ( ),

ij
t t t

i i i i ij ij

i iij
t t t t

ij ij ij ij ij ij ij

ij ij
t t t

ij ij ij ij

ij

r p f

f e f e e

f e e

 

  

 

 

 

 





 + +

+ + −
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（ ）

 (20) 

which concludes the proof. 

References 

[1]  WU H, TIAN H, NIE G F, et al. Wireless Powered Mobile Edge 

Computing for Industrial Internet of Things Systems[J]. IEEE Access, 

2020, 8:101539-101549. 

[2]  Xie G Q, Yang K H, Xu C, et al. Digital twinning based adaptive 

development environment for automotive cyber-physical systems[J] 

IEEE Transactions on Industrial Informatics, 2021, to be published. 



·99· Journal on communications 第 42卷 

 

[3]  WU H, LYU X C, TIAN H. Online optimization of wireless powered 

mobile-edge computing for heterogeneous industrial internet of 

things[J]. IEEE Internet of Things Journal, 2019, 6(6): 9880-9892. 

[4]  XING L. Cascading Failures in Internet of Things: Review and Per-

spectives on Reliability and Resilience[J]. IEEE Internet of Things 

Journal, 2020, 8(1): 44-64. 

[5]  PROKHORENKI V, BABAR M A. Architectural resilience in cloud, 

fog and edge systems: A survey[J]. IEEE ACCESS, 2020, 8: 

28078-28095 

[6]  AYOUBI S, ASSI C, CHEN Y, et al. Restoration methods for cloud 

multicast virtual networks[J]. Journal of Network and Computer Ap-

plications, 2017, 78: 180-190. 

[7]  SATRIA D, PARK D, JO M. Recovery for overloaded mobile edge 

computing[J]. Future Generation Computer Systems, 2017, 70: 

138-147. 

[8]  TENG R, LI H B, MIURA R. Dynamic recovery of wireless multi-hop 

infrastructure with the autonomous mobile base station[J]. IEEE Ac-

cess, 2016, 4: 627-638. 

[9]  LI P D, YANG X F. On dynamic recovery of cloud storage system 

under advanced persistent threats[J]. IEEE Access, 2019, 7: 

103556-103569. 

[10]  BAXTER G J, Timár G, MENDES J F F. Targeted damage to inter-

dependent networks[J]. Physical Review E, 2018, 98(3): 032307. 

[11]  BRUMMITT C D, D’SOUZA R M, LEICHT E A. Suppressing cas-

cades of load in interdependent networks[J]. Proceedings of the Na-

tional Academy of Sciences, 2012, 109(12): E680-E689. 

[12]  MORONE F, MAKSE H A. Influence maximization in complex net-

works through optimal percolation[J]. Nature, 2015, 524(7563): 65-68. 

[13]  RUDNICK H, MOCARQUER S, ANDRADE E, et al. Disaster man-

agement[J]. IEEE Power and Energy Magazine, 2011, 9(2): 37-45. 

[14] PUNZO G, TEWARI A, VASILE M, et al. Engineering resilient com-

plex systems: The necessary shift toward complexity science[J]. IEEE 

System Journal, 2020, 14(3): 3865-3874 

[15]  WU H, TIAN H, FAN S S, et al. Data Age Aware Scheduling for 

Wireless Powered Mobile-Edge Computing in Industrial Internet of 

Things[J]. IEEE Transactions on Industrial Informatics, 2020, 17(1): 

398-408. 

[16]  SMITH A M, Pósfai M, ROHDEN M, et al. Competitive percolation 

strategies for network recovery[J]. Scientific reports, 2019, 9(1): 1-12. 

[17]  QIN J, MIAO L, Combined Simulated Annealing Algorithm for Lo-

gistics Network Design Problem[C]// 2009 International Workshop on 

Intelligent Systems and Applications, Wuhan, China, 2009: 1-4, 

[18]  KHELIFI M, SAIDI M Y and BOUDJIT S, Genetic algorithm based 

model for capacitated network design problem[C]// 2016 24th 

In-ternational Conference on Software, Telecommunications and 

Computer Networks (SoftCOM), Split, Croatia, 2016: 1-6 

[19]  LIAN H B, Network Design Problems, Formulations and Solutions[D] 

Order No. 3507762 The University of Texas at Dallas, 2012. Ann Ar-

bor: ProQuest. Web. 3 Mar. 2021. 

[20]  LI D Q, ZHANG Q, ZIO E, et al. Network reliability analysis based on 

percolation theory[J]. Reliability Engineering & System Safety, 2015, 

142:556–562. 

[21]  LYU X C, REN C S, NI W L, et al. Distributed optimization of col-

laborative regions in large-scale inhomogeneous fog computing[J]. 

IEEE Journal on Selected Areas in Communications, 2018, 36(3): 

574-586. 

[22]  ZHAO P T, TIAN H, QIN C, et al. Energy-saving offloading by jointly 

allocating radio and computational resources for mobile edge compu-

ting[J]. IEEE Access, 2017, 5: 11255-11268. 

[23]  ZHAO P T, TIAN H, CHEN K C, et al. Context-aware TDD configu-

ration and resource allocation for mobile edge computing[J]. IEEE 

Transactions on Communications, 2019, 68(2): 1118-1131. 

[24]  CERISOLA LOPEZ DE HARO S, Ramos Galán A. A finite Benders 

decomposition algorithm for mixed integer problems, resolution 

through parametric Branch and Bound[J]. 2016. 

[25]  RAHMANIANI R, CRAINIC T G, GENDREAU M, et al. The Bend-

ers decomposition algorithm: A literature review[J]. European Journal 

of Operational Research, 2017, 259(3): 801-817. 

[26]  WU H, TIAN H, NIE G F. Energy-efficient inter-frequency small cell 

discovery in dense urban environments[J]. IEEE Wireless Communi-

cations Letters, 2019, 8(1): 41-44. 

[27]  PEREIRA M V F, PINTO L, CUNHA S H F, et al. A decomposition 

approach to automated generation/transmission expansion planning[J]. 

IEEE Transactions on Power Apparatus and Systems, 1985 (11): 

3074-3083. 

[28]  ERICKSON J. Algorithms[M]. Illinois: Independently Published, 

2019. 

[29]  OLIVEIRA F, GROSSMANN I E, HAMACHER S. Accelerating 

Benders stochastic decomposition for the optimization under uncer-

tainty of the petroleum product supply chain[J]. Computers & Opera-

tions Research, 2014, 49: 47-58. 

[30]  Gan Y. Operations Research [M]. Beijing: Tsinghua University Press, 

2013. 

[31]  FISCHETTI M, LODI A. Local branching[J]. Mathematical program-

ming, 2003, 98(1-3): 23-47. 

[32]  SANTOSO T, AHMED S, GOETSCHALCKX M, et al. A stochastic 

programming approach for supply chain network design under uncer-

tainty[J]. European Journal of Operational Research, 2005, 167(1): 



第 4期 Tian H. et al：Recovery Mechanism of Large-scale Damaged Edge Computing Network in Industrial Internet of Things ·100· 

 

96-115. 

[33]  YU A, Wang N, WU N. Scale-free networks: Characteristics of the 

time-variant robustness and vulnerability[J]. IEEE Systems Journal, 

2020, to be published.  

 

 


