物联网学报 ›› 2019, Vol. 3 ›› Issue (4): 34-47.doi: 10.11959/j.issn.2096-3750.2019.00130
李一倩,刘留,李慧婷,张琨,袁泽
修回日期:
2019-08-28
出版日期:
2019-12-30
发布日期:
2020-02-05
作者简介:
李一倩(1995- ),女,河北廊坊人,北京交通大学硕士生,主要研究方向为无线通信|刘留(1981- ),男,云南昆明人,博士,北京交通大学教授,主要研究方向为信道测量与建模、时变信道下无线通信信号处理和宽带移动通信|李慧婷(1997- ),女,湖南岳阳人,北京交通大学硕士生,主要研究方向为无线通信|张琨(1993- ),男,辽宁大连人,北京交通大学硕士生,主要研究方向为无线通信|袁泽(1994- ),男,黑龙江伊春人,北京交通大学硕士生,主要研究方向为无线通信
基金资助:
Yiqian LI,Liu LIU,Huiting LI,Kun ZHANG,Ze YUAN
Revised:
2019-08-28
Online:
2019-12-30
Published:
2020-02-05
Supported by:
摘要:
目前,工业物联网已成为国家的关键竞争力,智能制造产业加速发展,无线技术作为工业物联网系统中的信息传输通道,在工业领域起着强有力的支撑作用。首先介绍了工业场景的无线信道特征;随后分析了不同频段上的传播特性,并建议了工业专用网络初始部署的主要调整频段;对大尺度衰落和小尺度衰落两大无线信道特性在工业场景下产生的原因、影响因素及取值范围进行了整理,归纳了工业物联网无线信道特性的相应参数。
中图分类号:
李一倩,刘留,李慧婷,张琨,袁泽. 工业物联网无线信道特性研究[J]. 物联网学报, 2019, 3(4): 34-47.
Yiqian LI,Liu LIU,Huiting LI,Kun ZHANG,Ze YUAN. Research on characteristics of industrial IoT wireless channel[J]. Chinese Journal on Internet of Things, 2019, 3(4): 34-47.
表3
在不同工业场景下部署的频段及其特殊考虑"
工业场景 | 频段/GHz | 传播方式 | 距离d/m | 其他考虑 |
汽车焊接车间[ | 1.1、1.6、2.55和3.5 | LOS | 120 | 天线分别在金属箱内部、外部 |
NLOS | 120 | |||
工业设备[ | 2.40 | LOS | 100 | 考虑了其他无线电的干扰 |
NLOS | 100 | |||
化学纸浆和电缆工厂[ | 2.45 | LOS | 95 | 研究多种场景,测量在不同的位置进行 |
核电站[ | 2.45 | LOS | — | |
工业设施[ | 1.30 | LOS和NLOS | 100 | 测量时延达300 ns的情况 |
石油钻井平台[ | 2.40 | LOS | 10 | 在一个模拟典型工业环境的测试平台进行测量 |
5.80 | LOS | 10 | ||
2.40 | NLOS | 10 | ||
5.80 | NLOS | 10 | ||
金属加工厂[ | 0.90 | LOS | 140 | 在多径分量丰富的环境中进行测量 |
2.40 | LOS | 140 | ||
5.20 | LOS | 140 | ||
500 kV变电站[ | 2.40 | LOS | 20 | 对电力能源场景进行全面测量,包括LOS和NLOS |
NLOS | 20 | |||
地下变压器[ | 2.40 | LOS | 20 | |
NLOS | 20 | |||
主电源室[ | 2.40 | LOS | 20 | |
NLOS | 20 | |||
生产设备装配间[ | 0.90 | LOS | 16 | 研究了一个新的信道容量模型 |
1.60 | LOS | 16 | ||
2.45 | LOS | 16 | ||
生产设备电子室[ | 0.90 | LOS | 16 | |
1.60 | LOS | 16 | ||
2.45 | LOS | 16 | ||
生产设备机械室[ | 0.90 | LOS | 16 | |
1.60 | LOS | 16 | ||
2.45 | LOS | 16 | ||
走廊[ | 1.90 | LOS | — | 对K因子进行新的估计 |
实验室[ | 1.90 | LOS | — | |
工业厂房[ | 1.90 | LOS | — | |
工业生产实验室[ | 2.30、5.70 | LOS和NLOS | 35 | 天线在空间中均匀配置 |
表4
工业测量中路径损耗参数"
工业场景 | 频段/GHz | 传播方式 | 距离d/m | 路径损耗指数n |
工业设备[ | 2.40 | LOS | 100 | 1.60 |
NLOS | 100 | 3.73 | ||
化学纸浆和电缆工厂[ | 2.45 | LOS | 95 | 1.10 |
核电站[ | 2.45 | LOS | — | 1.86 |
工业设施[ | 1.30 | LOS | 100 | 2.20 |
石油钻井平台[ | 2.40 | LOS | 10 | 1.39 |
5.80 | LOS | 10 | 1.76 | |
2.40 | NLOS1 | 10 | 2.06 | |
5.80 | NLOS1 | 10 | 2.44 | |
2.40 | NLOS2 | 10 | 1.17 | |
5.80 | NLOS2 | 10 | 1.41 | |
金属加工厂[ | 0.90 | LOS3 | 140 | 3.51 |
LOS4 | 140 | 2.49 | ||
2.40 | LOS3 | 140 | 3.44 | |
LOS4 | 140 | 2.16 | ||
5.20 | LOS3 | 140 | 2.59 | |
500 kV变电站[ | 2.40 | LOS | 20 | 2.42 |
NLOS | 20 | 3.51 | ||
地下变压器[ | 2.40 | LOS | 20 | 1.45 |
NLOS | 20 | 3.15 | ||
主电源室[ | 2.40 | LOS | 20 | 1.64 |
NLOS | 20 | 2.38 | ||
生产设备装配间[ | 0.90 | LOS | 16 | 1.72 |
1.60 | LOS | 16 | 1.37 | |
2.45 | LOS | 16 | 1.69 | |
生产设备电子室[ | 0.90 | LOS | 16 | 1.96 |
1.60 | LOS | 16 | 1.83 | |
2.45 | LOS | 16 | 1.81 | |
生产设备机械室[ | 0.90 | LOS | 16 | 1.79 |
1.60 | LOS | 16 | 1.59 | |
2.45 | LOS | 16 | 1.69 | |
走廊[ | 1.90 | LOS | — | 1.80 |
实验室[ | 1.90 | LOS | — | 2.20 |
工业厂房[ | 1.90 | LOS | — | 1.40 |
表7
工业测量中遮挡效应参数"
工业场景 | 频率/GHz | 穿透损耗/dB |
密集钢管后面区域[ | 2.4 | 20~50 |
在开放且密集的生产实验室[ | 2.3、5.7 | 大于45 |
金属仓库货架(每一货架)[ | 2.4 | 4.6 |
各种常见的工厂设备 | 1.3 | 2~20 |
(包括墙壁和地板)[ | ||
铁罐、管道、重型机械[ | 2.4 | 小于10 |
混凝土楼板[ | 2.4 | 大于30 |
穿过混凝土墙[ | 2.4 | 大于15 |
厚度小于1.3 cm的无色玻璃[ | 28 | 3.6 |
厚度小于1.3 cm的染色玻璃[ | 28 | 24.5 |
穿过厚度为38.1 cm的墙壁[ | 28 | 6.8 |
穿过柜壁[ | 28 | 5~20 |
穿过木门[ | 28 | 小于17 |
表8
不同工业场景下的时延扩展参数"
工业场景 | 尺寸 | 传播方式 | RMS时延平均值/ns |
大型金属[ | 100 m×43 m | LOS | 10~200 |
工厂设备[ | 20 m×50 m | LOS | 11 |
NLOS | 22 | ||
大型金属仓库货架[ | 40 m×20 m×3 m | LOS | <10 |
NLOS | <50 | ||
金属仓库货架[ | 20 m×20 m×5 m | NLOS | 76 |
炼油厂[ | 数公顷 | NLOS | <150 |
混凝土楼板[ | 14 m×9 m×8 m | LOS | 30~50 |
94 m×70 m×10 m | |||
各种常见的工厂设备[ | 20 m×77 m×12 m | LOS | 35 |
NLOS | 55 | ||
在开放且密集的生产实验室[ | 21 000~100 000 m2 | LOS | 30~170 |
NLOS | |||
瓷砖建筑[ | 40 m×40 m | LOS | <25 |
石油钻机[ | 120 m×20 m | LOS | 40~140 |
300 m×120 m×30 m | NLOS | 40~300 | |
管道[ | 15 m×17 m×5 m 18 m×27 m×5 m | LOS | 30~50 |
重型机械[ | 29 m×15 m×7.3 m | LOS | 20~30 |
NLOS | 30~35 | ||
密集钢管后面区域[ | 4 m×8 m×3 m | LOS | <45 |
混凝土墙[ | 85 m×150 m×8 m | NLOS | 220 |
混凝土墙后区域[ | 130 m×59 m×8 m | NLOS | <15 |
钻机[ | 16 m×45 m×10 m | LOS | 30~105 |
[1] | 杜玉河 . 《IIoT 白皮书》正式发布[J]. 起重运输机械, 2017(10): 34-35. |
DU Y H . The industrial Internet of things white paper was officially released[J]. Lifting and Transport Machinery, 2017(10): 34-35. | |
[2] | 孙玉 . 我国物联网产业发展趋势[J]. 物联网学报, 2017,1(3): 1-5. |
SUN Y . Development trend of IoT industry in China[J]. Chinese Journal on Internet of Things, 2017,1(3): 1-5. | |
[3] | 张克, 刘留, 袁泽 ,等. IIoT 无线信道与噪声特性[J]. 电信科学, 2018,34(8): 87-97. |
ZHANG K , LIU L , YUAN Z ,et al. IIoT wireless channel and noise characteristics[J]. Telecommunications Science, 2018,34(8): 87-97. | |
[4] | 工业互联网产业联盟.工业无线电磁环境白皮书(AII).[S]. 2018 |
Industrial Internet Industry Alliance (AII). White paper on industrial wireless electromagnetic environment[S]. 2018 | |
[5] | 张琨, 陶成, 刘留 ,等. IIoT中的频谱占用及噪声特性分析[J]. 宁波大学学报(理工版), 2019,32(1): 20-25. |
ZHANG K , TAO C , LIU L ,et al. Analysis of spectrum occupancy and noise characteristics in IIoT[J]. Journal of Ningbo University (Science and Technology Edition), 2019,32(1): 20-25. | |
[6] | 3GPP.Study on channel model for frequencies from 0.5 to 100 GHz (Release 14)[S]. 2017 |
[7] | R1-1813175 URLLC use cases and deployments for beyond 52.6 GHz[C]// 3GPP TSG-RAN WG1 Meeting #95. 2018. |
[8] | 3GPP.Study on communication for automation in vertical domains[S]. 2017 |
[9] | R1-1812699 IIoT channel modeling for industrial indoor scenario[C]// 3GPP TSG-RAN WG1 Meeting #95. 2018. |
[10] | R1-1813129 Views on scenario description,frequency bands of interest,and existing literature on channel measurements for the indoor industrial scenario[C]// 3GPP TSG-RAN WG1 Meeting #95. 2018. |
[11] | RP-1812521 LS on channel model for indoor industrial scenarios[C]// 5G-ACIA,3GPP TSG-RAN Meeting #81. 2018. |
[12] | R1-1813177 Scenarios,frequencies and new field measurement results from two operational factory halls at 3.5 GHz for various antenna configurations[C]// 3GPP TSG RAN WG1 Meeting #95. 2018. |
[13] | R1-1813453 Indoor industrial channel model[C]// 3GPP TSG-RAN WG1 #95. 2018. |
[14] | ZHANG K , LIU L , TAO C . Channel measurement and characterization for industrial Internet of thing[C]// IEEE Wireless Communications and Networking Conference. IEEE, 2019. |
[15] | DANIEL S , MICHAEL M , MICHAEL L . Radio channel quality in industrial wireless sensor networks[C]// IEEE Sensors Industry Conference. IEEE, 2005. |
[16] | SNORRE K , TOEKIL B . Radiowave propagation in industrial environments[C]// IEEE 26th Annu.Conference Industrial Electronics Society. IEEE, 2000: 2425-2430. |
[17] | THEODORE S R . Characterization of UHF multipath radio channels in factory building[J]. IEEE Transactions Antennas Propagation, 1989,37(8): 1058-1069. |
[18] | LUO S P , NAGESH P , CHEN Z Z ,et al. RF channel modeling of a WSN testbed for industrial environment[C]// IEEE Radio Wireless Symposium. IEEE, 2009: 375-378. |
[19] | EMMERIC T , WOUT J , LEEN V ,et al. The industrial indoor channel:large-scale and temporal fading at 900,2400,and 5200 MHz[J]. IEEE Transactions on Wireless Communications, 2008,7(7). |
[20] | VEHBI C G , LU B , GERHARD P H . Opportunities and challenges of wireless sensor networks in smart grid[J]. IEEE Transactions on Industrial Electronics, 2010,57(10): 3557-3564. |
[21] | AI Y , MICHAEL M , LI Q H . Radio frequency measurements and capacity analysis for industrial indoor environments[C]// 9th European Conference Antennas Propagation. IEEE, 2015: 1-5. |
[22] | CLAUDE O , DANIELLE V J , BRUNO C . Channel characterization of indoor wireless personal area networks[J]. IEEE Transactions Antennas Propagation, 2006,54(11): 3143-3150. |
[23] | DEREJE A W , IGNACIO R L , GILBERTO B ,et al. Radio propagation analysis of industrial scenarios within the context of ultra-reliable communication[C]// IEEE Vehicular Technology Conference (VTC). IEEE, 2018. |
[24] | ZOUBIR I , GERARD J M J , HOMAYOUN N . UWB channel measurements and results for office and industrial environments[C]// IEEE International Conference on Ultra-Wideband,Waltham. IEEE, 2006: 225-230. |
[25] | R1-1810659 Field measurement results from an operational factory floor at 3.5 GHz and 28 GHz[C]// 3GPP TSG RAN WG1 Meeting #94. 2018. |
[26] | XAVIER R , SANA A , ADNAN C . Indoor dual polarised radio channel characterisation in the 54 and 70 GHz bands[J]. IET Microwaves,Antennas & Propagation, 2018,12(8): 1287-1292. |
[27] | XU H , VIKAS K , THEODORE S R . Spatial and temporal characteristics of 60-GHz indoor channels[J]. IEEE Journal on Selected Areas in Communications, 2002,20(3): 620-630. |
[28] | R1-1812683 Consideration on channel model for industrial factory environment[C]// 3GPP TSG RAN WG1 Meeting #95 Spokane. 2018. |
[29] | MICHAEL C . Propagation channel characteristics of industrial wireless sensor networks[J]. IEEE Transactions Antennas Propagation, 2016,58(1): 66-73. |
[30] | ?EYMA T , KARA A . UHF propagation measurements in heavy industry[C]// Signal Processing and Communication Application Conference. IEEE, 2016. |
[31] | JOHAN K , SHURJEEL W , PETER A ,et al. A measurement-based statistical model for industrial ultra-wideband channels[J]. IEEE Transactions on Wireless Communications, 2007,6(8): 3028-3037. |
[32] | THEOFILOS C , PANAGIOTIS G , ILIANA O ,et al. Channel measurement and characterization for a complex industrial and office topology at 2.4 GHz[C]// 11th International Conference on Software,Knowledge,Information Management and Applications (SKIMA). 2017: 1-8. |
[33] | PHAIBOON S . Space diversity path loss in a modern factory at frequency 2.4 GHz[J].,2014,13. WSEAS Transactions on Communications, 2014,13. |
[34] | EMMERIC T , WOUT J , LUC M ,et al. Large-scale fading in industrial environments at wireless communication frequencies[C]// IEEE Antennas and Propagation Society International Symposium. 2007: 3001-3004. |
[35] | DAVID P , EMMERIC T , ALEC P ,et al. Wi-Fi network planning and intra-network interference issues in large industrial warehouses[C]// 10th European Conference on Antennas and Propagation (EuCAP). 2016: 1-5. |
[36] | TOM D , LUC M , JEROEN H ,et al. Measurement-based wireless network planning,monitoring,and reconfiguration solution for robust radio communications in indoor factories[J]. IET Science,Measurement & Technology, 2016,10(4): 375-382. |
[37] | THEODORE S R , CLARE D M . UHF fading in factories[J]. IEEE Journal on Selected Areas in Communications, 1989,7(1): 40-48. |
[38] | KATE R , GALEN K , CHRIS H . Measurements in harsh RF propagation environments to support performance evaluation of wireless sensor networks[J]. Sensor Review, 2009,29(3): 211-222. |
[39] | CASSIO B A ,et al. On indoor coverage models for industrial facilities[C]// 7th International Telecommunications Symposium (ITS). 2010. |
[40] | ZHAO H , RIMMA M , SUN S ,et al. 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York city[C]// IEEE International Conference on Communications (ICC). IEEE, 2013. |
[41] | MACCARTNEY G R , ZHANG J , NIE S ,et al. Path loss models for 5G millimeter wave propagation channels in urban microcells[C]// Globe com 2013 IEEE Global Communications Conference. IEEE, 2013. |
[42] | R1-1812164 Channel Model for Factory Automation Scenario[C]// Ericsson1 RAN1#95. 2018. |
[43] | LIU L , TAO C , QIU J ,et al. Position-based modeling for wireless channel on high-speed railway under a viaduct at 2.35 GHz[J]. IEEE Journal on Selected Areas in Communications, 2012,30(4): 834-845. |
[44] | DIRK H , ANDREAS R , AXEL S ,et al. Characterization of the directional mobile radio channel in industrial scenarios,based on wideband propagation measurements[C]// Gateway to 21st Century Communications Village.VTC 1999-Fall IEEE VTS 50th Vehicular Technology Conference (Cat.No.99CH36324). 19994: 2258-2262. |
[45] | TANGHE E , GAILLOT D P , LIENARD M ,et al. Experimental analysis of dense multipath components in an industrial environment[J]. IEEE Transactions on Antennas and Propagation, 2014,62(7): 3797-3805. |
[46] | GAILLOT D P , TANGHE E , JOSEPH W ,et al. Polarization properties of specular and dense multipath components in a large industrial hall[J]. IEEE Transactions on Antennas and Propagation, 2015,63(7): 3219-3228. |
[47] | HANNA F , LORENZO M , JULIEN K ,et al. Radio channel characterization at 2.4 GHz in nuclear plant environment[C]// 9th European Conference on Antennas and Propagation (EuCAP). Lisbon, 2015. |
[48] | HOLFELD B , WIERUCH D , RASCKOWSKI L ,et al. Radio channel characterization at 5.85 GHz for wireless M2M communication of industrial robots[C]// IEEE WCNC. IEEE, 2016. |
[49] | AI Y , MICHAEL C , LI Q H . Power delay profile analysis and modeling of industrial indoor channels[C]// 9th European Conference on Antennas and Propagation (EuCAP). 2015. |
[50] | COLL J F , OJEDA J D M D , STENUMGAARD P ,et al. Industrial indoor environment characterization - Propagation models[C]// 10th International Symposium on Electromagnetic Compatibility. IEEE, 2011. |
[51] | COLL J F , STENUMGAARD P , et al . Characterisation of highly absorbent and highly reflective radio wave propagation environments in industrial applications[C]// IET Communications. 2012,6(15): 2402-2412. |
[52] | LIU L , ZHANG K , TAO C ,et al. Channel measurements and characterizations for automobile factory environments[C]// 20th International Conference on Advanced Communication Technology (ICACT). 2018: 234-238. |
[53] | MIAOUDAKIS A , LEKKSA A , KALIVAS G ,et al. Radio channel characterization in industrial environments and spread spectrum modem performance[C]// 10th Emerging Technologies and Factory Automation. IEEE, 2005. |
[54] | CHENG S Q , GAILLOT D P , TANGHE E ,et al. Polarimetric distance-dependent models for large hall scenarios[J]. IEEE Transactions on Antennas and Propagation, 2016,64(5): 1907-1917. |
[55] | AI Y , JORGEN B A , MICHAEL C . Path-loss prediction for an industrial indoor environment based on room electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2017,65(7): 3664-3674. |
[56] | HANSSENS B , TANGHE E , MARTENS L ,et al. Doppler analysis of an indoor university-hall[C]// European Conference on Antennas &Propagation. IEEE, 2015. |
[57] | HANSSENS B , TANGHE E , MARTENS L ,et al. Measurement-based analysis of delay-doppler characteristics in an indoor environment[J]. IEEE Transactions on Antennas and Propagation, 2016,64(1): 370-374. |
[58] | ZHAO X W , LI Y W , BALLA M C ,et al. Performance evaluation of a new tapped-delay-line model for indoor MIMO channels[C]// 9th International Conference on Communications and Networking in China. 2014. |
[59] | ZHANG K , LIU L , TAO C . Doppler frequency trajectories of the mechanical robot arm and automated guided vehicle in industrial scenarios[C]// IEEE Vehicular Technology Conference (VTC 2019 Spring). IEEE, 2019. |
[60] | DIMITRI B , HENNING T , UWE M . Real-time characterization of fast-varying industrial wireless channels[C]// RADCOM 2013-Radar,Communication and Measurement. 2013. |
[61] | NORAINI A , LATIFATH M K , MASSUDI M ,et al. Interference issues and mitigation method in WSN 2.4 GHz ISM band:a survey[C]// 2nd International Conference of Electronic Design. 2014. |
[62] | TANGHE E , JOSEPH W , BRUYNE J D ,et al. The industrial indoor channel:statistical analysis of the power delay profile[J]. AEU-International Journal of Electronics and Communications, 2010,64(9): 806-812. |
[1] | 吴靖, 李晟, 张景, 辛明, 陶若文, 周舟, 潘力佳, 施毅. 面向物联网的新型柔性传感器[J]. 物联网学报, 2023, 7(2): 1-14. |
[2] | 梁峻阁, 宋怡然, 孙杨帆, 计樱莹, 潘力佳, 施毅. 基于可穿戴与可植入技术的人体健康物联网研究进展[J]. 物联网学报, 2023, 7(2): 26-34. |
[3] | 耿光磊, 高博, 熊轲, 樊平毅, 陆杨, 王煜炜. 联邦学习赋能6G网络综述[J]. 物联网学报, 2023, 7(2): 50-66. |
[4] | 卫浓钰, 江子龙, 陈芳炯. 基于位置信息和能量均衡的声电协同网络AODV[J]. 物联网学报, 2023, 7(1): 27-36. |
[5] | 申滨, 李银波, 梁枭伟. 基于增强加权质心定位的认知物联网用户频谱接入控制[J]. 物联网学报, 2023, 7(1): 93-108. |
[6] | 汪静, 何乐生, 李忠红, 李路迟, 杨航. 物联网轻量级认证加密算法ASCON的软硬件协同设计[J]. 物联网学报, 2022, 6(4): 139-148. |
[7] | 蒋伟进, 罗田甜, 杨莹, 李恩, 周文颖. 物联网环境下基于区块链技术的私有数据访问控制模型[J]. 物联网学报, 2022, 6(4): 169-182. |
[8] | 邢方圆, 贺诗波, 孙铭阳, 陈积明. 基于“云-管-边-端”物联网架构的碳排放监测[J]. 物联网学报, 2022, 6(4): 53-64. |
[9] | 张在琛, 尤肖虎, 党建, 吴亮, 朱秉诚, 陈绩, 汪磊. 无线光通信与物联网[J]. 物联网学报, 2022, 6(3): 1-13. |
[10] | 黄诺, 刘伟杰, 龚晨. 面向工业物联网的拍赫兹通信[J]. 物联网学报, 2022, 6(3): 37-46. |
[11] | 孙君, 赵尚维康. 工业物联网中基于Sarsa算法的节能计算卸载方案[J]. 物联网学报, 2022, 6(3): 82-90. |
[12] | 刘杨, 李崔灿, 彭木根. 低功耗水下物联网:愿景与关键技术[J]. 物联网学报, 2022, 6(2): 1-9. |
[13] | 杨靖, 谢金凤, 陈怡. 我国智慧城市场景中物联网终端评测与认证体系研究[J]. 物联网学报, 2022, 6(2): 26-37. |
[14] | 罗丹, 徐茹枝, 关志涛. 物联网环境中基于深度学习的差分隐私预算优化方法[J]. 物联网学报, 2022, 6(2): 65-76. |
[15] | 罗梓珲, 江呈羚, 刘亮, 郑霄龙, 马华东. 基于深度强化学习的智能车间调度方法研究[J]. 物联网学报, 2022, 6(1): 53-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|