物联网学报 ›› 2023, Vol. 7 ›› Issue (2): 26-34.doi: 10.11959/j.issn.2096-3750.2023.00343
梁峻阁1,2, 宋怡然1, 孙杨帆3, 计樱莹3, 潘力佳2, 施毅2
修回日期:
2023-04-21
出版日期:
2023-06-30
发布日期:
2023-06-01
作者简介:
梁峻阁(1991- ),男,江南大学物联网工程学院副教授、院长助理、射频传感技术实验室负责人,主要研究方向为传感器及检测电路、微波传感与系统基金资助:
Junge LIANG1,2, Yiran SONG1, Yangfan SUN3, Yingying JI3, Lijia PAN2, Yi SHI2
Revised:
2023-04-21
Online:
2023-06-30
Published:
2023-06-01
Supported by:
摘要:
健康人群通过在日常生活中对各项生理参数进行监测,能够在疾病早期预警身体异常和疾病,从而提高个人生活质量,减轻国家公共卫生医疗资源压力,因此,亟须研发基于人体物联网的可穿戴与可植入传感器系统。以基于体液和电信号的生物信息检测为切入点划分传感技术,并引入自供能、近端通信等人体健康物联网的关键技术进行讨论。最后探讨了健康数据管理与疾病诊断预防领域的技术进展和产业应用,尝试构建了基于可穿戴与可植入技术的人体健康物联网概念。
中图分类号:
梁峻阁, 宋怡然, 孙杨帆, 计樱莹, 潘力佳, 施毅. 基于可穿戴与可植入技术的人体健康物联网研究进展[J]. 物联网学报, 2023, 7(2): 26-34.
Junge LIANG, Yiran SONG, Yangfan SUN, Yingying JI, Lijia PAN, Yi SHI. Research progress of human health IoT based on wearable and implantable techniques[J]. Chinese Journal on Internet of Things, 2023, 7(2): 26-34.
[42] | WAGNER J , MARTINEZ-CANCINO R ,, DELORME A ,et al. High-density EEG mobile brain/body imaging data recorded during a challenging auditory gait pacing task[J]. Scientific Data, 2019(6): 211. |
[43] | LIANG J G , LEE D , YOUNS E ,et al. Electroencephalography network effects of corpus callosotomy in patients with lennox-gastaut syndrome[J]. Frontiers in Neurology, 2017(8): 456. |
[44] | LIANG J G , KIM N Y , KOA ,et al. Changes in functional brain network topology after successful and unsuccessful corpus callosotomy for lennox-gastaut syndrome[J]. Scientific Reports, 2018,8:3414. |
[45] | PISARCHIK A N , MAKSIMENKO V A , HRAMOV A E . From novel technology to novel applications:comment on an integrated brain-machine interface platform with thousands of channels by elon musk and neuralink[J]. Journal of Medical Internet Research, 2019,21(10): e16356. |
[46] | STARR P A . Totally implantable bidirectional neural prostheses:a flexible platform for innovation in neuromodulation[J]. Frontiers in Neuroscience, 2018(12): 619. |
[47] | KOYDEMIR H C , OZCAN A . Wearable and implantable sensors for biomedical applications[J]. Annual Review of Analytical Chemistry (PaloAlto,Calif), 2018,11(1): 127-146. |
[1] | SHEN Y Z , SHEN S G , WU Z D ,et al. Signaling game-based availability assessment for edge computing-assisted IoT systems with malware dissemination[J]. Journal of Information Security and Applications, 2022(66): 103140. |
[2] | LEMUS-Zú?IGALG , FéLIXJM , FIDES-VALEROA ,et al. A proof-of-concept IoT system for remote healthcare based on interoperability standards[J]. Sensors (Basel,Switzerland), 2022,22(4): 1646. |
[3] | TAWALBEH L , MUHEIDAT F , TAWALBEH M ,et al. Edge enabled IoT system model for secure healthcare[J]. Measurement, 2022(191): 110792. |
[4] | IM T H , LEE J H , WANG H S ,et al. Flashlight-material interaction for wearable and flexible electronics[J]. Materials Today, 2021(51): 525-551. |
[5] | LEUNG C M , CHEN X Q , WANG T ,et al. Enhanced electrome chanical response in PVDF-BNBT composite nanofibers for flexible sensor applications[J]. Materials (Basel,Switzerland), 2022,15(5): 1769. |
[6] | ZHOU Z X , LIU K , BAN Z ,et al. Highly adhesive,self-healing,anti-freezing and anti-drying organohydrogel with self-power and mechanoluminescence for multifunctional flexible sensor[J]. Composites Part A:Applied Science and Manufacturing, 2022(154): 106806. |
[48] | LANDE R G , POURZAND M . WITHDRAWN:brain computer interface technology:usability and applications in psychiatry[J]. Technology and Health Care:Official Journal of the European Society for Engineering and Medicine, 2015: 1-4. |
[49] | LE BARS S , CHOKRON S , BALP R ,et al. Theoretical perspective on an ideomotor brain-computer interface:toward a naturalistic and non-invasive brain-computer interface paradigm based on action-effect representation[J]. Frontiers in Human Neuroscience, 2021(15): 732764. |
[7] | MCSHAN D , RAY P C , YU H . Molecular toxicity mechanism of nanosilver[J]. J Food Drug Anal, 2014,22(1): 116-127. |
[8] | TU Z Y , MA Z , LI J A ,et al. Prospective on doping engineering of conductive polymers for enhanced interfacial properties[J]. Applied Physics Letters, 2021,119(15): 150504. |
[50] | RENTON A I , MATTINGLEY J B , PAINTER D R . Optimising non-invasive brain-computer interface systems for free communication between na?ve human participants[J]. Scientific Reports, 2019(9): 18705. |
[51] | JOCHUMSEN M , AL MUHAMMADEE JANJUA T , ARCEO J C ,et al. Induction of neural plasticity using a low-cost open source brain-computer interface and a 3D-printed wrist exoskeleton[J]. Sensors, 2021,21(2): 572. |
[9] | HEIKENFELD J , JAJACKA , ROGERS J ,et al. Wearable sensors:modalities,challenges,and prospects[J]. Lab on a Chip, 2018,18(2): 217-248. |
[10] | VILELA D , ROMEO A , SáNCHEZ S . Flexible sensors for biomedical technology[J]. Labona Chip, 2016,16(3): 402-408. |
[52] | LUO Z , PENG B , ZENG J ,et al. Sub-thermionic,ultra-high-gain organic transistors and circuits[J]. Nat Commun, 2021,12(1): 1928. |
[53] | LOE M E , MORRISSEY M J , TOMKOSR ,et al. Detecting slow narrowband modulation in EEG signals[J]. Journal of Neuroscience Methods, 2022(378): 109660. |
[11] | ZHANG H L , YANG Y HOU T . Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors[J]. Nano Energy, 2013,2(5): 1019-1024. |
[12] | LIM Y W , JIN J , BAE B S . Optically transparent multiscale composite films for flexible and wearable electronics[J]. Advanced Materials (Deerfield Beach,Fla), 2020,32(35): e1907143. |
[54] | PRASAD D S , CHANAMALLU S R , PRASAD K S . Optimized deformable convolution network for detection and mitigation of ocular artifacts from EEG signal[J]. Multimedia Tools and Applications, 2022,81(21): 30841-30879. |
[55] | LI M M , LIANG Y , YANG L F ,et al. Automatic bad channel detection in implantable brain-computer interfaces using multimodal features based on local field potentials and spike signals[J]. Computers in Biology and Medicine, 2020,116:103572. |
[13] | KARTHIKEYAN V , SURJADI J U , WONG J C K ,et al. Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting[J]. Journal of Power Sources, 2020(455): 227983. |
[14] | PRUNRT G , PAWULA F , FLEURY G ,et al. A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications[J]. Materials Today Physics, 2021(18): 100402. |
[15] | HU G S , YI Z R , LU L J ,et al. Self-powered 5G NB-IoT system for remote monitoring applications[J]. Nano Energy, 2021,87:106140. |
[16] | FANG Y , TANG T Y , LI Y F ,et al. A high-performance triboelectricelectromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor IoT applications[J]. iScience, 2021,24(4): 102300. |
[56] | LIMG B . Smart watch detection of left ventricular dysfunction[J]. Nature Reviews Cardiology, 2023,20(2): 75. |
[57] | WANG M Q , YANG Y R , MIN J H ,et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients[J]. Nature Biomedical Engineering, 2022,6(11): 1225-1235. |
[17] | DE D , BHARTI P , DAS S K ,et al. Multimodal wearable sensing for fine-grained activity recognition in healthcare[J]. IEEE Internet Computing, 2015,19(5): 26-35. |
[18] | 王昭昭, 沈小清, 何细飞 ,等. 微信教育结合运动手环监测在心肌梗死患者康复运动的应用[J]. 护理学杂志, 2017,32(15): 8-10. |
[58] | YING S , ZHANG J H , YAN K ,et al. Self-powered direct-current type pressure sensor by polypyrrole/met al Schottky junction[J]. Journal of Physics D:Applied Physics, 2021,54(42): 424008. |
[59] | LI L L , PAN L J , MA Z ,et al. All inkjet-printed amperometric multiplexed biosensors based on nanostructured conductive hydrogel electrodes[J]. Nano Letters, 2018,18(6): 3322-3327. |
[18] | WANG Z Z , SHEN X Q , HE X F ,et al. Effect of exercises with sports bracelet combined with WeChat-based education on acute myocardial infarction patients[J]. Journal of Nursing Science, 2017,32(15): 8-10. |
[19] | 杨梅, 丛扬帆, 李雪瑞 . 融合 FAHP 和 TOPSIS 的适老化产品综合评价与优选方法:以老年智能手环为例[J]. 图学学报, 2020,41(3): 469-479. |
[60] | STEVNER A B A , VIDAURRE D , CABRAL J ,et al. Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep[J]. Nature Communications, 2019,10:1035. |
[61] | CHEN L Y , TEE B C K , CHORTOS A L ,et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care[J]. Nature Communications, 2014(5): 5028. |
[19] | YANG M , CONG Y F , LI X R . Comprehensive evaluation and optimization method of products for the elderly based on FAHP and TOPSIS—a case study on the smart bracelet for the elderly[J]. Journal of Graphics, 2020,41(3): 469-479. |
[20] | LIN P H , SHEU S C , CHEN C W ,et al. Wearable hydrogel patch with noninvasive,electrochemical glucose sensor for natural sweat detection[J]. Talanta, 2022(241): 123187. |
[62] | WANG C , CAI Y Y , ZHOU W ,et al. A wearable respiration sensor for real-time monitoring of chronic kidney disease[J]. ACS Applied Materials & Interfaces, 2022,14(10): 12630-12639. |
[63] | SHANEFIELD S C , KELLY M N , POSA M . Wearable technology leads to initial workup of Graves' disease in an adolescent female[J]. The Journal of Adolescent Health:Official Publication of the Society for Adolescent Medicine, 2022,71(3): 370-372. |
[64] | KOO J H , SONG J K , YOO S ,et al. Unconventional device and material approaches for monolithic biointegration of implantable sensors and wearable electronics[J]. Advanced Materials Technologies, 2020,5(10): 2000407. |
[65] | TEHRANI F , TEYMOURIAN H , WUERSTLE B ,et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid[J]. Nature Biomedical Engineering, 2022,6(11): 1214-1224. |
[21] | LI G , WANG K , WANG D ,et al. Noninvasive blood glucose detection system based on dynamic spectrum and M+N theory[J]. Analytica Chimica Acta, 2022(1201): 339635. |
[22] | ZHU C H , XU Y F , CHEN Q D ,et al. A flexible electrochemical biosensor based on functionalized poly(3,4-ethylenedioxythiophene) film to detect lactate in sweat of the human body[J]. Journal of Colloid and Interface Science, 2022(617): 454-462. |
[23] | ALORAYNANA , RASSELS , XU C ,et al. A single wavelength mid-infrared photoacoustic spectroscopy for noninvasive glucose detection using machine learning[J]. Biosensors, 2022,12(3): 166. |
[24] | HAN Z P , ZHANG X Y , YUAN H ,et al. Graphene oxide/gold nanoparticle/graphite fiber microelectrodes for directing electron transfer of glucose oxidase and glucose detection[J]. Journal of Power Sources, 2022(521): 230956. |
[25] | MA Y J , ZHANG Y C , CAI S S ,et al. Flexible hybrid electronics for digital healthcare[J]. Advanced Materials, 2020,32(15): 1902062. |
[26] | VORA D , GARIMELLA H T , GERMAN C L ,et al. Microneedle and iontophoresis mediated delivery of methotrexate into and across healthy and psoriatic skin[J]. International Journal of Pharmaceutics, 2022(618): 121693. |
[27] | ZHANG P P , ZHU J C , ZHAO B J ,et al. Wearable transdermal microneedle patch based on photonic crystal hydrogel for glucose monitoring[J]. Chinese Journal of Analytical Chemistry, 2022,50(4): 100054. |
[28] | LI X , HUANG X , MO J ,et al. A fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment[J]. Advanced Science (Weinheim,Baden-Wurttemberg,Germany), 2021,8(16): e2100827. |
[29] | WANG P M , CORNWELL M , PRAUSNITZ M R . Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles[J]. Diabetes Technology & Therapeutics, 2005,7(1): 131-141. |
[30] | CHEN Q Y , ZHAO Y , LIU Y Q . Current development in wearable glucose meters[J]. Chinese Chemical Letters, 2021,32(12): 3705-3717. |
[31] | LEGNER C , KALWA U , PATEL V ,et al. Sweat sensing in the smart wearables era:towards integrative,multifunctional and bodycompliant perspiration analysis[J]. Sensors and Actuators A:Physical, 2019(296): 200-221. |
[32] | CHO I J , KANG D , HAN S ,et al. Thin,soft,skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat[J]. Advanced Healthcare Materials, 2017,6(5). |
[33] | CUI Y X , DUAN W , JIN Y ,et al. Ratiometric fluorescent nanohybrid for noninvasive and visual monitoring of sweat glucose[J]. ACS Sensors, 2020,5(7): 2096-2105. |
[34] | LIU Y Q , YU Q , LUO X J ,et al. Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing[J]. Microsystems & Nanoengineering, 2021(7): 75. |
[35] | KAMBLEA , GHARE P , KUMAR V . Machine-learning-enabled adaptive signal decomposition for a brain-computer interface using EEG[J]. Biomedical Signal Processing and Control, 2022(75): 103526. |
[36] | ALLISON B Z , WOLPAW E W , WOLPAW J R . Brain-computer interface systems:progress and prospects[J]. Expert Review of Medical Devices, 2007,4(4): 463-474. |
[37] | MCFARLAND D J , WOLPAW J R . EEG-based brain-computer interfaces[J]. Current Opinionin Biomedical Engineering, 2017(4): 194-200. |
[38] | LIU G , WANG J . EEGG:an analytic brain-computer interface algorithm[J]. IEEE Transactionson Neural Systemsand Rehabilitation Engineering, 2022(30): 643-655. |
[39] | HU H , HUANG H , XIA L ,et al. Engineering vanadium carbide MXene as multienzyme mimetics for efficient in vivo ischemic stroke treatment[J]. Chemical Engineering Journal, 2022(440): 135810. |
[40] | STACK E , AGARWAL V , KING R ,et al. Identifying balance impairments in people with Parkinson’s disease using video and wearable sensors[J]. Gait & Posture, 2018(62): 321-326. |
[41] | SALEHZADEH A , CALITZ A P , GREYLING J . Human activity recognition using deep electroencephalography learning[J]. Biomedical Signal Processing and Control, 2020(62): 102094. |
[1] | 吴靖, 李晟, 张景, 辛明, 陶若文, 周舟, 潘力佳, 施毅. 面向物联网的新型柔性传感器[J]. 物联网学报, 2023, 7(2): 1-14. |
[2] | 耿光磊, 高博, 熊轲, 樊平毅, 陆杨, 王煜炜. 联邦学习赋能6G网络综述[J]. 物联网学报, 2023, 7(2): 50-66. |
[3] | 卫浓钰, 江子龙, 陈芳炯. 基于位置信息和能量均衡的声电协同网络AODV[J]. 物联网学报, 2023, 7(1): 27-36. |
[4] | 申滨, 李银波, 梁枭伟. 基于增强加权质心定位的认知物联网用户频谱接入控制[J]. 物联网学报, 2023, 7(1): 93-108. |
[5] | 汪静, 何乐生, 李忠红, 李路迟, 杨航. 物联网轻量级认证加密算法ASCON的软硬件协同设计[J]. 物联网学报, 2022, 6(4): 139-148. |
[6] | 蒋伟进, 罗田甜, 杨莹, 李恩, 周文颖. 物联网环境下基于区块链技术的私有数据访问控制模型[J]. 物联网学报, 2022, 6(4): 169-182. |
[7] | 邢方圆, 贺诗波, 孙铭阳, 陈积明. 基于“云-管-边-端”物联网架构的碳排放监测[J]. 物联网学报, 2022, 6(4): 53-64. |
[8] | 张在琛, 尤肖虎, 党建, 吴亮, 朱秉诚, 陈绩, 汪磊. 无线光通信与物联网[J]. 物联网学报, 2022, 6(3): 1-13. |
[9] | 黄诺, 刘伟杰, 龚晨. 面向工业物联网的拍赫兹通信[J]. 物联网学报, 2022, 6(3): 37-46. |
[10] | 孙君, 赵尚维康. 工业物联网中基于Sarsa算法的节能计算卸载方案[J]. 物联网学报, 2022, 6(3): 82-90. |
[11] | 刘杨, 李崔灿, 彭木根. 低功耗水下物联网:愿景与关键技术[J]. 物联网学报, 2022, 6(2): 1-9. |
[12] | 杨靖, 谢金凤, 陈怡. 我国智慧城市场景中物联网终端评测与认证体系研究[J]. 物联网学报, 2022, 6(2): 26-37. |
[13] | 罗丹, 徐茹枝, 关志涛. 物联网环境中基于深度学习的差分隐私预算优化方法[J]. 物联网学报, 2022, 6(2): 65-76. |
[14] | 罗梓珲, 江呈羚, 刘亮, 郑霄龙, 马华东. 基于深度强化学习的智能车间调度方法研究[J]. 物联网学报, 2022, 6(1): 53-64. |
[15] | 王巍, 谷壬倩, 彭力, 赵继军, 魏忠诚, 常存喜. 基于无人机的物联网空基中继鲁棒优化[J]. 物联网学报, 2022, 6(1): 101-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|