[1] |
SCHAUSBERGER F , STEINBOECK A , KUGI A . Optimization-based reduction of contour errors of heavy plates in hot rolling[J]. Journal of Process Control, 2016,47: 150-160.
|
[2] |
XIE B S , CAI Q W , YUN Y ,et al. Development of high strength ultra-heavy plate processed with gradient temperature rolling,intercritical quenching and tempering[J]. Materials Science and Engineering:A, 2017,680: 454-468.
|
[3] |
MA X B , LIU H M , SUN J L ,et al. Impact of main drive system of 5 m wide and heavy plate mill on screw-down load deviation[J]. Engineering Failure Analysis, 2017,79: 913-927.
|
[4] |
王国栋 . 高质量中厚板生产关键共性技术研发现状和前景[J]. 轧钢, 2019,36(1): 1-8,30.
|
|
WANG G D . Status and prospects of research and development of key common technologies for high-quality heavy and medium plate production[J]. Steel Rolling, 2019,36(1): 1-8,30.
|
[5] |
LAUGWITZ M , SEUREN S , JOCHUM M ,et al. Development of levelling strategies for heavy plates via controlled FE models[J]. Procedia Engineering, 2017,207: 1349-1354.
|
[6] |
SCHAUSBERGER F , STEINBOECK A , KUGI A . Feedback control of the contour shape in heavy-plate hot rolling[J]. IEEE Transactions on Control Systems Technology, 2018,26(3): 842-856.
|
[7] |
YU W , LI G S , CAI Q W . Effect of a novel gradient temperature rolling process on deformation,microstructure and mechanical properties of ultra-heavy plate[J]. Journal of Materials Processing Technology, 2015,217: 317-326.
|
[8] |
BASANTA-VAL P . An efficient industrial big-data engine[J]. IEEE Transactions on Industrial Informatics, 2018,14(4): 1361-1369.
|
[9] |
WANG T , KE H X , ZHENG X ,et al. Big data cleaning based on mobile edge computing in industrial sensor-cloud[J]. IEEE Transactions on Industrial Informatics, 2020,16(2): 1321-1329.
|
[10] |
焦四海, 丁建华, 闫博 ,等. 厚板数据中心和智能制造的实践与探索[J]. 宝钢技术, 2020(6): 8-15.
|
|
JIAO S H , DING J H , YAN B ,et al. Practice and exploration data center and intelligent manufacture of plate mill[J]. Baosteel Technology, 2020(6): 8-15.
|
[11] |
GUO K H , XU T , KUI X Y ,et al. iFusion:towards efficient intelligence fusion for deep learning from real-time and heterogeneous data[J]. Information Fusion, 2019,51: 215-223.
|
[12] |
NGUYEN T T , PHAM X C , LIEW A W C ,et al. Aggregation of classifiers:a justifiable information granularity approach[J]. IEEE Transactions on Cybernetics, 2019,49(6): 2168-2177.
|
[13] |
王国栋 . 近年我国轧制技术的发展、现状和前景[J]. 轧钢, 2017,34(1): 1-8.
|
|
WANG G D . Development,current situation and prospect of Chinese steel rolling technology in recent years[J]. Steel Rolling, 2017,34(1): 1-8.
|
[14] |
GENG D Q , ZHANG C Y , XIA C J ,et al. Big data-based improved data acquisition and storage system for designing industrial data platform[J]. IEEE Access, 2019,7: 44574-44582.
|
[15] |
FABLET R , VIET P H , LGUENSAT R . Data-driven models for the spatio-temporal interpolation of satellite-derived SST fields[J]. IEEE Transactions on Computational Imaging, 2017,3(4): 647-657.
|
[16] |
JIANG X X , PAN S R , LONG G D ,et al. Cost-sensitive parallel learning framework for insurance intelligence operation[J]. IEEE Transactions on Industrial Electronics, 2019,66(12): 9713-9723.
|
[17] |
LEE S Y , TAMA B A , CHOI C ,et al. Spatial and sequential deep learning approach for predicting temperature distribution in a steel-making continuous casting process[J]. IEEE Access, 2020,8: 21953-21965.
|
[18] |
RESHEF D N , RESHEF Y A , FINUCANE H K ,et al. Detecting novel associations in large data sets[J]. Science, 2011,334(6062): 1518-1524.
|
[19] |
ZHANG K , LIU N , YUAN X F ,et al. Fine-grained age estimation in the wild with attention LSTM networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020,30(9): 3140-3152.
|
[20] |
CAO H C , LIU H , SONG E M ,et al. Multi-branch ensemble learning architecture based on 3D CNN for false positive reduction in lung nodule detection[J]. IEEE Access, 2019,7: 67380-67391.
|