[9] |
WEI Y Z , XU X N . Ultra-short-term wind speed prediction model using LSTM networks[J]. Journal of Electronic Measurement and Instrumentation, 2019,33(2): 64-71.
|
[10] |
张露, 卢继平, 梅亦蕾 ,等. 基于不同优化准则的风电功率预测[J]. 电力自动化设备, 2015,35(5): 139-145.
|
|
ZHANG L , LU J P , MEI Y L ,et al. Wind power forecasting based on different optimization criterions[J]. Electric Power Automation Equipment, 2015,35(5): 139-145.
|
[11] |
MIRJALILI S , LEWIS A . The whale optimization algorithm[J]. Advances in Engineering Software, 2016,95: 51-67.
|
[12] |
BURKARD M , WHITWORTH D , SCHIRMER K ,et al. Establishment of the first humpback whale fibroblast cell lines and their application in chemical risk assessment[J]. Aquatic Toxicology, 2015,167: 240-247.
|
[13] |
MIRJALILI S , MIRJALILI S M , LEWIS A . Grey wolf optimizer[J]. Advances in Engineering Software, 2014,69: 46-61.
|
[14] |
AL-ABOODY N A , AL-RAWESHIDY H S , . Grey wolf optimization-based energy-efficient routing protocol for heterogeneous wireless sensor networks[C]// 2016 4th International Symposium on Computational and Business Intelligence (ISCBI). Piscataway:IEEE Press, 2016: 101-107.
|
[15] |
王海峰, 李萍, 王博 ,等. 灰狼算法优化BP神经网络的图像去模糊复原[J]. 液晶与显示, 2019,34(10): 992-999.
|
|
WANG H F , LI P , WANG B ,et al. Image deblurring restoration of BP neural network based on grey wolf algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2019,34(10): 992-999.
|
[16] |
喻华, 卢继平, 曾燕婷 ,等. 基于不同优化准则和广义回归神经网络的风电功率非线性组合预测[J]. 高电压技术, 2019,45(3): 1002-1008.
|
[1] |
王雪芹 . 风电项目运营期生态影响分析探讨[J]. 环境与发展, 2018,30(5): 10-11,25.
|
|
WANG X Q . Analysis and discussion on the ecological impact of wind power project in operation period[J]. Environment and Development, 2018,30(5): 10-11,25.
|
[2] |
杜云, 黎发贵, 胡荣 ,等. 测风塔在风电场风能资源评估中的重要性和代表性[J]. 水力发电, 2018,44(7): 97-99.
|
|
DU Y , LI F G , HU R ,et al. The importance and representation of wind measuring tower in wind energy resources assessment[J]. Water Power, 2018,44(7): 97-99.
|
[3] |
DAI J C , TAN Y Y , YANG W X ,et al. Investigation of wind resource characteristics in mountain wind farm using multiple-unit SCADA data in Chenzhou:a case study[J]. Energy Conversion and Management, 2017,148: 378-393.
|
[4] |
BIZRAH A , AL-MUHAINI M , . The impact of seasonal ARMA wind speed modeling on the reliability of power distribution systems[C]// 2017 IEEE Power & Energy Society General Meeting. Piscataway:IEEE Press, 2017: 1-5.
|
[5] |
ZHANG Y G , ZHAO Y , KONG C H ,et al. A new prediction method based on VMD-PRBF-ARMA-E model considering wind speed characteristic[J]. Energy Conversion and Management, 2020,203: 112254.
|
[6] |
LIU G B , ZHOU J Z , JIA B J ,et al. Advance short-term wind energy quality assessment based on instantaneous standard deviation and variogram of wind speed by a hybrid method[J]. Applied Energy, 2019,238: 643-667.
|
[7] |
AHADI A , LIANG X D . Wind speed time series predicted by neural network[C]// 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE). Piscataway:IEEE Press, 2018: 1-4.
|
[8] |
ZHANG Y G , CHEN B , ZHAO Y ,et al. Wind speed prediction of IPSO-BP neural network based on Lorenz disturbance[J]. IEEE Access, 2018,6: 53168-53179.
|
[16] |
YU H , LU J P , ZENG Y T ,et al. Nonlinear combined model for wind power forecasting based on different optimization criteria and generalized regression neural network[J]. High Voltage Engineering, 2019,45(3): 1002-1008.
|
[9] |
魏昱洲, 许西宁 . 基于LSTM长短期记忆网络的超短期风速预测[J]. 电子测量与仪器学报, 2019,33(2): 64-71.
|