[1] |
KRIZHEVSK Y A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks[J]. Communication softhe ACM, 2017,60(6): 84-90.
|
[2] |
SZEGED Y C , LIU W , JIA Y Q ,et al. Going deeper with convolutions[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2015: 1-9.
|
[3] |
DONG X D , XU Y P , XU Z J ,et al. A static hand gesture recognition model based on the improved centroid watershed algorithm and a dual-channel CNN[C]// Proceedings of 2018 24th International Conference on Automation and Computing (ICAC). Piscataway:IEEEPress, 2018: 1-6.
|
[4] |
REN S Q , HE K M , GIRSHICK R ,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6): 1137-1149.
|
[5] |
SHIN H C , ROTH H R , GAO M C ,et al. Deep convolutional neural networks for computer-aided detection:CNN architectures,dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016,35(5): 1285-1298.
|
[6] |
LIN T Y , ROYCHOWDHURY A , MAJI S . Bilinear CNN models for fine-grained visual recognition[C]// Proceedings of 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2015: 1449-1457.
|
[7] |
WE IH , ZHU M , WANG B ,et al. Two-level progressive attention convolutional network for fine-grained image recognition[J]. IEEE Access, 2020(8): 104985-104995.
|
[8] |
ZHANG Y , YANG S Y , LI H B ,et al. Shadow tracking of moving target based on CNN for video SAR system[C]// Proceedings of IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. Piscataway:IEEE Press, 2018: 4399-4402.
|
[9] |
WANG M , ABDELFATTAH S , MOUSTAFA N ,et al. Deep Gaussian mixture-hidden Markov model for classification of EEG signals[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018,2(4): 278-287.
|
[10] |
CHEN L , ZHANG H W , XIAO J ,et al. SCA-CNN:spatial and channel-wise attention in convolutional networks for image captioning[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 6298-6306.
|
[11] |
ZHANG X Y , ZHOU X Y , LIN M X ,et al. ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of 2018 IEEE/CVFConference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 6848-6856.
|
[12] |
SUDHA S , JAYANTHI K B , RAJASEKARAN C ,et al. Segmentation of RoI in medical images using CNN-A comparative study[C]// Proceedings of TENCON 2019 - 2019 IEEE Region 10 Conference. Piscataway:IEEE Press, 2019: 767-771.
|
[13] |
SHARMA A K , FOROOSH H . Slim-CNN:alight-weight CNN for face attribute prediction[C]// Proceedings of 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition. Piscataway:IEEE Press, 2020: 329-335.
|
[14] |
HOWARD A G , ZHU M L , CHEN B ,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB]. 2017.
|
[15] |
SHI C , YANG J , HAN Y ,et al. A 1000 fps vision chip based on a dynamically reconfigurable hybrid architecture comprising a PE array processor and self-organizing map neural network[J]. IEEE Journal of Solid-State Circuits, 2014,49(9): 2067-2082.
|
[16] |
LIHL , ZHANGZ X , YANG J ,et al. A novel vision chip architecture for image recognition based on convolutional neural network[C]// Proceedings of 2015 IEEE 11th International Conference on ASIC. Piscataway:IEEE Press, 2015: 1-4.
|
[17] |
VINAY B K , HARIHARM , KILLEDAR A . The FPGA based emulation of complex SoC for ADAS market on ZeBu-Server[C]// Proceedings of 2014 International Conference on Advances in Electronics Computers and Communications. Piscataway:IEEE Press, 2014: 1-4.
|
[18] |
ENDC. Synopsys推出业界最快的仿真系统[EB]. 2014.
|
|
ENDC. Synopsys Iaunches the industry’s fastest simulation system[EB]. 2014.
|
[19] |
WANG S H , JIANG Y Y , HOUXX ,et al. Cerebral micro-bleed detection based on the convolution neural network with rank based average pooling[J]. IEEE Access, 2017(5): 16576-16583.
|
[20] |
BASHA S H S , DUBEY S R , PULABAIGARI V ,et al. Impact of fully connected layers on performance of convolutional neural networks for image classification[J]. Neurocomputing, 2020,378: 112-119.
|
[21] |
ZEILER M D , FERGUS R . Visualizing and understanding convolutional networks[C]// Computer Vision – ECCV 2014, 2014: 818-833.
|
[22] |
SIMONYANK ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[EB]. 2014.
|
[23] |
SZEGEDY C , VANHOUCKEV , IOFFE S ,et al. Rethinking the inception architecture for computer vision[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 2818-2826.
|
[24] |
HE K M , ZHANG X Y , REN S Q ,et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 770-778.
|
[25] |
ZOPH B , VASUDEVAN V , SHLENS J ,et al. Learning transferable architectures for scalable image recognition[C]// Proceedings of 2018 IEEE/CVFConference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 8697-8710.
|