[1] |
WANG S F , LEE Y H , SHIAH Y J ,et al. Time-frequency analysis of EEGs recorded during meditation[C]// Proceedings of 2011 1st International Conference on Robot,Vision and Signal Processing. Piscataway:IEEE Press, 2011,11(10): 73-76.
|
[2] |
RUSNAC A L , GRIGORE O . EEG preprocessing methods for BCI imagined speech signals[C]// Proceedings of 2021 International Conference on e-Health and Bioengineering (EHB). Piscataway:IEEE Press, 2021: 1-4.
|
[3] |
MüHL C , CHANEL G , ALLISON B ,et al. Third workshop on affective brain-computer interfaces (ABCI 2013):introduction[C]// Proceedings of 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. Piscataway:IEEE Press, 2013:821.
|
[4] |
WEN D , LIANG B B , ZHOU Y H ,et al. The current research of combining multi-modal brain-computer interfaces with virtual reality[J]. IEEE Journal of Biomedical and Health Informatics, 2021,25(9): 3278-3287.
|
[5] |
KAUATI-SAITOé SILVEIRA G F M , DA-SILVA P J G ,et al. Classification of motor tasks from EEG signals comparing preprocessing techniques[C]// XXVI Brazilian Congress on Biomedical Engineering, 2019: 109-113.
|
[6] |
WANG K , ZHAI D H , XIA Y Q . Motor imagination EEG recognition algorithm based on DWT,CSP and extreme learning machine[C]// Proceedings of 2019 Chinese Control Conference (CCC). Piscataway:IEEE Press, 2019: 4590-4595.
|
[7] |
王行愚, 金晶, 张宇 ,等. 脑控:基于脑-机接口的人机融合控制[J]. 自动化学报, 2013,39(3): 208-221.
|
|
WANG X Y , JIN J , ZHANG Y ,et al. Brain control:human-computer integration control based on brain-computer interface[J]. Acta Automatica Sinica, 2013,39(3): 208-221.
|
[8] |
SHI T W , REN L , CUI W H . Feature extraction of brain–computer interface electroencephalogram based on motor imagery[J]. IEEE Sensors Journal, 2020,20(20): 11787-11794.
|
[9] |
FEDOSOV N , LEVADNIY I , DMITRIEV A ,et al. Independent component analysis for different movements detection in BCI application based on sensorimotor rhythms[C]// Proceedings of 2020 Ural Symposium on Biomedical Engineering,Radio electronics and Information Technology (USBEREIT). Piscataway:IEEE Press, 2020: 69-72.
|
[10] |
SELIM S , TANTAWI M M , SHEDEED H A ,et al. A CSP\AM-BA-SVM approach for motor imagery BCI system[J]. IEEE Access, 2018,6(10): 49192-49208.
|
[11] |
JIA X W , LI K , LI X Y ,et al. A novel semi-supervised deep learning framework for affective state recognition on EEG signals[C]// Procee dings of 2014 IEEE International Conference on Bioinformatics and Bioengineering. Piscataway:IEEE Press, 2014: 30-37.
|
[12] |
LI X Y , JIA X W , XUN G X ,et al. Improving EEG feature learning via synchronized facial video[C]// Proceedings of 2015 IEEE International Conference on Big Data(Big Data). Piscataway:IEEE Press, 2015: 843-848.
|
[13] |
孙嘉瑶 . 深度学习注意力机制在脑电信号分类中的应用[D]. 深圳:中国科学院大学(中国科学院深圳先进技术研究院), 2021.
|
|
SUN J Y . Application of deep learning attention mechanism in EEG classification[D]. Shenzhen:Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences, 2021.
|
[14] |
TAO Y Z , SUN T , MUHAMED A ,et al. Gated transformer for decoding human brain EEG signals[J]. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2021: 125-130.
|
[15] |
李畅, 蔡国超, 黄晓阳 ,等. 基于Transformer引导卷积神经网络的脑电信号分类方法:CN114564991A[P]. 2022-05-31.
|
|
LI C , CAI G C , HUANG X Y ,et al. EEG (electroencephalogram) signal classification method based on Transform guided convolutional neural network:CN114564991A[P]. 2022-05-31.
|
[16] |
LU N , LI T F , REN X D ,et al. A deep learning scheme for motor imagery classification based on restricted boltzmann machines[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering:a Publication of the IEEE Engineering in Medicine and Biology Society, 2017,25(6): 566-576.
|
[17] |
ZHANG R , LI X P , WANG Y W ,et al. Using brain network features to increase the classification accuracy of MI-BCI inefficiency subject[J]. IEEE Access, 2019,7: 74490-74499.
|
[18] |
DAS R , LOPEZ P S , AHMED KHAN M ,et al. FBCSP and adaptive boosting for multiclass motor imagery BCI data classification:a machine learning approach[C]// Proceedings of 2020 IEEE International Conference on Systems,Man,and Cybernetics. Piscataway:IEEE Press, 2020: 1275-1279.
|
[19] |
CHRISTENSEN S M , HOLM N S , PUTHUSSERYPADY S . An improved five class MI based BCI scheme for drone control using filter bank CSP[C]// Proceedings of 2019 7th International Winter Conference on Brain-Computer Interface (BCI). Piscataway:IEEE Press, 2019: 1-6.
|
[20] |
HUNG J W , LIN J R , ZHUANG L Y . The evaluation study of the deep learning model transformer in speech translation[C]// Proceedings of 2021 7th International Conference on Applied System Innovation (ICASI). Piscataway:IEEE Press, 2021: 30-33.
|
[21] |
SALTZ P , LIN S Y , CHENG S C ,et al. Dementia detection using transformer-based deep learning and natural language processing models[C]// Proceedings of 2021 IEEE 9th International Conference on Healthcare Informatics. Piscataway:IEEE Press, 2021: 509-510.
|
[22] |
徐嘉杰, 卢兆军, 袁飞 ,等. 基于深度神经网络和 SoftMax 分类器的台区负荷分类识别方法[J]. 电气自动化, 2021,43(6): 102-104,114.
|
|
XU J J , LU Z J , YUAN F ,et al. Classification and identification method of station load based on deep neural network and SoftMax classifier[J]. Electrical Automation, 2021,43(6): 102-104,114.
|
[23] |
邓建国 . 有监督学习中的损失函数及图像标注应用[D]. 太原:太原科技大学, 2020.
|
|
DENG J G . Loss function in supervised earning and its application in image annotation[D]. Taiyuan:Taiyuan University of Science and Technology, 2020.
|
[24] |
ZHANG Z J , . Improved Adam optimizer for deep neural networks[C]// Proceedings of 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS). Piscataway:IEEE Press, 2018: 1-2.
|
[25] |
CHENG L W , LI D L , YU G J ,et al. A motor imagery EEG feature extraction method based on energy principal component analysis and deep belief networks[J]. IEEE Access, 2020,8(8): 21453-21472.
|
[26] |
HOSSEINI M P , POMPILI D , ELISEVICH K ,et al. Optimized deep learning for EEG big data and seizure prediction BCI via Internet of Things[J]. IEEE Transactions on Big Data, 2017,3(4): 392-404.
|
[27] |
SHAHLAEI F , BAGH N , SHALIGRAM A D ,et al. Classification of motor imagery tasks using inter trial variance in the brain computer interface[C]// Proceedings of 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA). Piscataway:IEEE Press, 2018: 1-6.
|
[28] |
VASWANI A , SHAZEER N , PARMAR N ,et al. Attention is all you need[EB]. 2017.
|
[29] |
李嘉莹, 赵丽, 边琰 ,等. 基于LDA和KNN的下肢运动想象脑电信号分类研究[J]. 国外电子测量技术, 2021,40(1): 9-14.
|
|
LI J Y , ZHAO L , BIAN Y ,et al. Classification of lower limb motor imagination signals based on LDA and KNN[J]. Foreign Electronic Measurement Technology, 2021,40(1): 9-14.
|
[30] |
兰成辉, 李江天, 李敏 ,等. 基于皮电和肌电的驾驶疲劳判别阈值研究[J]. 科技风, 2021,1(5): 171-172.
|
|
LAN C H , LI J T , LI M ,et al. Research on driving fatigue discrimination threshold based on skin and emg[J]. Technology Wind, 2021,1(5): 171-172.
|