Chinese Journal on Internet of Things ›› 2021, Vol. 5 ›› Issue (3): 115-125.doi: 10.11959/j.issn.2096-3750.2021.00217
• Service and Application • Previous Articles Next Articles
Ling TAN1, Shanshan RONG1, Jingming XIA2, Sarker SAJIB2, Wenjie MA1
Revised:
2021-01-13
Online:
2021-09-30
Published:
2021-09-01
Supported by:
CLC Number:
Ling TAN, Shanshan RONG, Jingming XIA, Sarker SAJIB, Wenjie MA. Real-time diagnosis of multi-category skin diseases based on IR-VGG[J]. Chinese Journal on Internet of Things, 2021, 5(3): 115-125.
"
网络 | 改进方法 | 准确率 | 参数量 | 损失率 |
AlexNet | NoneSeg+IR | 86.68% 90.43% | 29.5 MB4.65 MB | 0.273 20.208 9 |
GoogLeNet | NoneSeg+IR | 86.01% 90.10% | 6.76 MB6.32 MB | 0.140 40.193 8 |
ResNet34 | NoneSeg+IR | 84.64% 77.88% | 22.8 MB22.7 MB | 0.308 70.549 9 |
ResNet50 | NoneSeg+IR | 85.84% 63.39% | 45.75 MB45.8 MB | 0.255 14.744 6 |
VGG16 | None | 85.02% | 138 MB | 0.361 4 |
[1] | ATLANTA. American cancer society[N]. Cancer Facts & Figures, 2018. |
[2] | 斯璐, 郭军 . 新版中国黑素瘤诊治指南解读[J]. 临床肿瘤学杂志, 2012,17(2): 172-173. |
SI L , GUO J . Interpretation of clinical practice guidelines for management of melanoma in China (new version of 2011)[J]. Chinese Clinical Oncology, 2012,17(2): 172-173. | |
[3] | KASMI R , MOKRANI K . Classification of malignant melanoma and benign skin lesions:implementation of automatic ABCD rule[J]. IET Image Processing, 2016,10(6): 448-455. |
[4] | SOYER H P , ARGENZIANO G , ZALAUDEK I ,et al. Three-point checklist of dermoscopy[J]. Dermatology, 2004,208(1): 27-31. |
[5] | ARGENZIANO G , CATRICALà C , ARDIGO M ,et al. Seven-point checklist of dermoscopy revisited[J]. British Journal of Dermatology, 2011,164(4): 785-790. |
[6] | MENZIES S W . A method for the diagnosis of primary cutaneous melanoma using surface microscopy[J]. Dermatologic Clinics, 2001,19(2): 299-305. |
[7] | HENNING J S , DUSZA S W , WANG S Q ,et al. The CASH (color,architecture,symmetry,and homogeneity) algorithm for dermoscopy[J]. Journal of the American Academy of Dermatology, 2007,56(1): 45-52. |
[8] | XIE F Y , FAN H D , LI Y ,et al. Melanoma classification on dermoscopy images using a neural network ensemble model[J]. IEEE Transactions on Medical Imaging, 2017,36(3): 849-858. |
[9] | ALI A R A , DESERNO T M . A systematic review of automated melanoma detection in dermatoscopic images and its ground truth data[C]// Proceedings of SPIE Medical Imaging:Image Perception,Observer Performance,and Technology Assessment. 2012. |
[10] | KOROTKOV K , GARCIA R . Computerized analysis of pigmented skin lesions:a review[J]. Artificial Intelligence in Medicine, 2012,56(2): 69-90. |
[11] | JAMIL U , KHALID S . Comparative study of classification techniques used in skin lesion detection systems[C]// Proceedings of 17th IEEE International Multi Topic Conference 2014. Piscataway:IEEE Press, 2014: 266-271. |
[12] | BI L , KIM J , AHN E ,et al. Automatic melanoma detection via multi-scale lesion-biased representation and joint reverse classification[C]// Proceedings of 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). Piscataway:IEEE Press, 2016: 1055-1058. |
[13] | HUANG A , KWAN S Y , CHANG W Y ,et al. A robust hair segmentation and removal approach for clinical images of skin lesions[C]// Proceedings of 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Piscataway:IEEE Press, 2013: 3315-3318. |
[14] | SáEZ A , SERRANO C , ACHA B . Model-based classification methods of global patterns in dermoscopic images[J]. IEEE Transactions on Medical Imaging, 2014,33(5): 1137-1147. |
[15] | IYATOMI H , CELEBI M E , SCHAEFER G ,et al. Automated color calibration method for dermoscopy images[J]. Computerized Medical Imaging and Graphics, 2011,35(2): 89-98. |
[16] | SCHAEFER G , RAJAB M I , CELEBI M E ,et al. Colour and contrast enhancement for improved skin lesion segmentation[J]. Computerized Medical Imaging and Graphics, 2011,35(2): 99-104. |
[17] | CELEBI M E , KINGRAVI H A , UDDIN B ,et al. A methodological approach to the classification of dermoscopy images[J]. Computerized Medical Imaging and Graphics, 2007,31(6): 362-373. |
[18] | GANSTER H , PINZ P , ROHRER R ,et al. Automated melanoma recognition[J]. IEEE Transactions on Medical Imaging, 2001,20(3): 233-239. |
[19] | XIE F Y , FAN H D , LI Y ,et al. Melanoma classification on dermoscopy images using a neural network ensemble model[J]. IEEE Transactions on Medical Imaging, 2017,36(3): 849-858. |
[20] | CAPDEHOURAT G , COREZ A , BAZZANO A ,et al. Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions[J]. Pattern Recognition Letters, 2011,32(16): 2187-2196. |
[21] | LAZEBNIK S , SCHMID C , PONCE J . Beyond bags of features:spatial pyramid matching for recognizing natural scene categories[C]// Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). Piscataway:IEEE Press, 2006: 2169-2178. |
[22] | CHEN S J , DING G G , LI C X ,et al. Image representation optimization based on locally aggregated descriptors[C]// Proceedings of Advances in Knowledge Discovery and Data Mining. 2016. |
[23] | SáNCHEZ J , PERRONNIN F , MENSINK T ,et al. Image classification with the fisher vector:theory and practice[J]. International Journal of Computer Vision, 2013,105(3): 222-245. |
[24] | CHATFIELD K , LEMPITSKY V , VEDALDI A ,et al. The devil is in the details:an evaluation of recent feature encoding methods[C]// Proceedings of the British Machine Vision Conference(2011). 2011. |
[25] | SONG Y Y , ZHANG L , CHEN S P ,et al. Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning[J]. IEEE Transactions on Biomedical Engineering, 2015,62(10): 2421-2433. |
[26] | HE K M , ZHANG X Y , REN S Q ,et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016: 770-778. |
[27] | KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6): 84-90. |
[28] | SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014. |
[29] | LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015,521(7553): 436-444. |
[30] | JAYALAKSHMI G S , KUMAR V S . Performance analysis of convolutional neural network (CNN) based cancerous skin lesion detection system[C]// Proceedings of 2019 International Conference on Computational Intelligence in Data Science (ICCIDS). Piscataway:IEEE Press, 2019: 1-6. |
[31] | 胡海根, 孔祥勇, 周乾伟 ,等. 基于深层卷积残差网络集成的黑色素瘤分类方法[J]. 计算机科学, 2019,46(5): 247-253. |
HU H G , KONG X Y , ZHOU Q W ,et al. Melanoma classification method by integrating deep convolutional residual network[J]. Computer Science, 2019,46(5): 247-253. | |
[32] | YU L Q , CHEN H , DOU Q ,et al. Automated melanoma recognition in dermoscopy images via very deep residual networks[C]// Proceedings of IEEE Transactions on Medical Imaging. Piscataway:IEEE Press, 2019: 994-1004. |
[33] | MAHBOD A , SCHAEFER G , WANG C L ,et al. Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification[J]. Computer Methods and Programs in Biomedicine, 2020,193: 105475. |
[34] | 李航, 余镇, 倪东 ,等. 基于深度残差网络的皮肤镜图像黑色素瘤的识别[J]. 中国生物医学工程学报, 2018,37(3): 274-282. |
LI H , YU Z , NI D ,et al. Melanoma recognition in dermoscopy images via deep residual network[J]. Chinese Journal of Biomedical Engineering, 2018,37(3): 274-282. | |
[35] | GUHA S R , M RAFIZUL HAQUE S . Convolutional neural network based skin lesion analysis for classifying melanoma[C]// Proceedings of 2019 International Conference on Sustainable Technologies for Industry4.0 (STI). Piscataway:IEEE Press, 2019: 1-5. |
[36] | CHEN M , ZHOU P , WU D ,et al. AI-Skin:skin disease recognition based on self-learning and wide data collection through a closed-loop framework[J]. Information Fusion, 2020,54: 1-9. |
[37] | ZAFAR K , GILANI S O , WARIS A ,et al. Skin lesion segmentation from dermoscopic images using convolutional neural network[J]. Sensors, 2020,20(6): 1601. |
[38] | MARQUES O . Gray-level transformations[M]. New Jersey: John Wiley & Sons, 2011. |
[39] | CHENG S H , SHANG G C , ZHANG L . Handwritten digit recognition based on improved VGG16 network[C]// Proceedings of SPIE 11069,Tenth International Conference on Graphics and Image Processing (ICGIP 2018). 2019. |
[40] | CODELLA N , ROTEMBERG V , TSCHANDL P ,et al. Skin lesion analysis toward melanoma detection 2018:A challenge hosted by the international skin imaging collaboration (ISIC)[J]. arXiv preprint arXiv:1902.03368, 2019. |
[1] | Zhifei ZHANG, Feng LIU, Yiyang GE, Shuo LI, Yu ZHANG, Ke XIONG. An intrusion detection method based on depthwise separable convolution and attention mechanism [J]. Chinese Journal on Internet of Things, 2023, 7(1): 49-59. |
[2] | Rui JIANG, Liuting SUN, Xiaoming WANG, Dapeng LI, Youyun XU. Research on EEG signal classification of motor imagery based on AE and Transformer [J]. Chinese Journal on Internet of Things, 2023, 7(1): 118-128. |
[3] | Biao ZHANG, Ximing WANG, Yifan XU, Wen LI, Hao HAN, Songyi LIU, Xueqiang CHEN. Multi-domain collaborative anti-jamming based on multi-agent deep reinforcement learning [J]. Chinese Journal on Internet of Things, 2022, 6(4): 104-116. |
[4] | Dan LUO, Ruzhi XU, Zhitao GUAN. Differential privacy budget optimization based on deep learning in IoT [J]. Chinese Journal on Internet of Things, 2022, 6(2): 65-76. |
[5] | Xuanzhe XU, Ke NING, Xuemin ZHENG, Mingxin ZHAO, Mengmeng XU, Nanjian WU, Liyuan LIU. Verification of an artificial intelligence vision chip design for edge computing based on hardware simulation system [J]. Chinese Journal on Internet of Things, 2022, 6(1): 20-28. |
[6] | Guoquan LI, Yonghai XU, Jinzhao LIN, Zhengwen HUANG. Res-DNN based signal detection algorithm for end-to-end MIMO systems [J]. Chinese Journal on Internet of Things, 2022, 6(1): 65-72. |
[7] | Chunmin LIN, Liekang ZENG, Xu CHEN. Research on power efficient autonomous UAV navigation algorithm: an edge intelligence driven approach [J]. Chinese Journal on Internet of Things, 2021, 5(2): 87-96. |
[8] | Muhan CHEN,Jiajia GUO,Xiao LI,Shi JIN. An overview of the CSI feedback based on deep learning for massive MIMO systems [J]. Chinese Journal on Internet of Things, 2020, 4(1): 33-44. |
[9] | Yong LIAO,Haimei YAO,Yuanxiao HUA. Channel state information acquisition algorithm based on deep learning for IoT [J]. Chinese Journal on Internet of Things, 2019, 3(1): 8-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|