[1] |
张孜, 黄钦炎, 冯川 . 广州市城市智能交通大数据体系研究与实践[J]. 大数据, 2019,5(4): 113-120.
|
|
ZHANG Z , HUANG Q Y , FENG C . Research and practice on traffic big data application system of urban intelligent transportation in Guangzhou[J]. Big Data Research, 2019,5(4): 113-120.
|
[2] |
JONATHAN M , JOHN F , ROCCO Z . An evaluation of HTM and LSTM for short-term arterial traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019,20(5): 1847-1857.
|
[3] |
罗文慧, 董宝田, 王泽胜 . 基于 CNN-SVR 混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息, 2017,17(5): 68-74.
|
|
LUO W H , DONG B T , WANG Z S . Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model[J]. Journal of Trans-portation Systems Engineering and Information Technology, 2017,17(5): 68-74.
|
[4] |
ZHANG Y Y , HUANG G . Traffic flow prediction model based on deep belief network and genetic algorithm[J]. IET Intelligent Transport Systems, 2018,12(6): 533-541.
|
[5] |
冯宁, 郭晟楠, 宋超 ,等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019,30(3): 759-769.
|
|
FENG N , GUO S N , SONG C ,et al. Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J]. Journal of Software, 2019,30(3): 759-769.
|
[6] |
SUN B , CHENG W , PRASHANT G ,et al. Short-term traffic forecasting using self-adjusting k-nearest neighbours[J]. IET Intelligent Transport Systems, 2018,12(1): 41-48.
|
[7] |
WU Y K , TAN H C , QIN L Q ,et al. A hybrid deep learning based traffic flow prediction method and its understanding[J]. Transportation Research Part C:Emerging Technologies, 2018: 166-180.
|
[8] |
CUI Z Y , KE R M , WANG Y H . Traffic graph convolutional recurrent neural network:a deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2020,21(11): 4883-4894.
|
[9] |
HAO P , WANG H F , DU B W ,et al. Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting[J]. Information Sciences, 2020,521: 277-290
|
[10] |
陈汐, 王印海, 代壮 ,等. 基于多源城市交通出行数据的定制公交需求辨识方法研究[J]. 大数据, 2020,6(6): 105-118.
|
|
CHEN X , WANG Y H , DAI Z ,et al. Research on demand identifica-tion for customized bus based on multi-source mobility data[J]. Big Data Research, 2020,6(6): 105-118.
|
[11] |
HU Y C , LU X B . Learning spatial-temporal features for video copy detection by the combination of CNN and RNN[J]. Journal of Visual Communication and Image Representation, 2018,12(6): 533-541.
|
[12] |
刘文华, 李浥东, 王涛 ,等. 基于高维特征表示的交通场景识别[J]. 智能科学与技术学报, 2019,1(4): 392-399.
|
|
LIU W H , LI Y D , WANG T ,et al. Transportation scene recognition based on high level feature representation[J]. Chinese Journal of Intel-ligent Science and Technology, 2019,1(4): 392-399.
|
[13] |
杜圣东, 李天瑞, 杨燕 ,等. 一种基于序列到序列时空注意力学习的交通流预测模型[J]. 计算机研究与发展, 2020,57(8): 1715-1728.
|
|
DU S D , LI T R , YANG Y ,et al. A sequence-to-sequence spa-tial-temporal attention learning model for urban traffic flow predic-tion[J]. Journal of Computer Research and Development, 2020,57(8): 1715-1728.
|
[14] |
MA X L , TAO Z M , WANG Y H ,et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C:Emerging Technologies, 2015,54: 187-197.
|
[15] |
ZHANG Y , XIN D R . Dynamic optimization long short-term memory model based on data preprocessing for short-term traffic flow prediction[J]. IEEE Access, 2020: 91510-91520.
|
[16] |
温惠英, 张东冉, 陆思园 . GA-LSTM 模型在高速公路交通流预测中的应用[J]. 哈尔滨工业大学学报, 2019,51(9): 81-87,95.
|
|
WEN H Y , ZHANG D R , LU S Y . Application of GA-LSTM model in highway traffic flow prediction[J]. Journal of Harbin Institute of Technology, 2019,51(9): 81-87,95.
|
[17] |
ZHANG L Z , NAWAF R A , LUO G C ,et al. A hybrid forecasting framework based on support vector regression with a modified genetic algorithm and a random forest for traffic flow prediction[J]. Tsinghua Science and Technology, 2018,23(4): 479-492.
|
[18] |
张阳, 杨书敏, 辛东嵘 . 改进小波包与长短时记忆组合模型的短时交通流预测[J]. 交通运输系统工程与信息, 2020,20(2): 204-210.
|
|
ZHANG Y , YANG S M , XIN D R . Short-term traffic flow forecast based on improved wavelet packet and long short-term memory com-bination model[J]. Journal of Transportation Systems Engineering and Information Technology, 2020,20(2): 204-210.
|
[19] |
傅成红, 杨书敏, 张阳 . 改进支持向量回归机的短时交通流预测[J]. 交通运输系统工程与信息, 2019,19(4): 130-134,148.
|
|
FU C H , YANG S M , ZHANG Y . Promoted short-term traffic flow prediction model based on deep learning and support vector regres-sion[J]. Journal of Transportation Systems Engineering and Informa-tion Technology, 2019,19(4): 130-134,148.
|