智能科学与技术学报 ›› 2022, Vol. 4 ›› Issue (4): 544-559.doi: 10.11959/j.issn.2096-6652.202240

• 专栏:人工智能3.0中的机器学习方法 • 上一篇    下一篇

基于少量图像的三维重建综述

于航1, 付彦伟2, 姜柏言3, 薛向阳1,2,3   

  1. 1 复旦大学工程与应用技术研究院,上海 200082
    2 复旦大学大数据学院,上海 200082
    3 复旦大学计算机科学技术学院,上海 200082
  • 修回日期:2022-08-11 出版日期:2022-12-15 发布日期:2022-12-01
  • 作者简介:于航(1991− ),男,复旦大学工程与应用技术研究院博士生,主要研究方向为3D视觉、人体重建
    付彦伟(1986− ),男,博士,复旦大学大数据学院研究员、博士生导师,主要研究方向为少量样本学习、稀疏化学习算法、图像修复等
    姜柏言(1996− ),男,复旦大学计算机科学技术学院博士生,主要研究方向为三维/四维人体表示与重建
    薛向阳(1968− ),男,博士,复旦大学计算机科学技术学院教授、博士生导师,主要研究方向为计算机视觉、多媒体内容识别和类脑智能系统等

A survey of image-based few-shot 3D reconstruction

Hang YU1, Yanwei FU2, Boyan JIANG3, Xiangyang XUE1,2,3   

  1. 1 Academy for Engineering &Technology, Fudan University, Shanghai 200082, China
    2 School of Data Science, Fudan University, Shanghai 200082, China
    3 School of Computer Science, Fudan University, Shanghai 200082, China
  • Revised:2022-08-11 Online:2022-12-15 Published:2022-12-01

摘要:

基于少量图像的三维重建被认为是第三代人工智能的经典应用之一。在计算机图形学和计算机视觉领域,基于少量图像的三维重建任务因具有广泛的应用场景和很高的研究价值,长期以来吸引着众多学者的目光。引入深度学习方法后,该领域于近年来得到了长足发展。对此类基于少量图像的三维重建任务进行了全面阐述,并介绍了本研究组在该方面的系列工作,对其中涉及的数据类型进行分析,阐明其适用性和一般处理方法。此外,对常见的数据集进行分析、整理,针对不同重建方法,归纳出其基本框架、思路。最后,展示了一些常见三维重建的代表性实验结果,并提出了未来可能的研究方向。

关键词: 三维重建, 小样本学习, 人体重建

Abstract:

Few-shot 3D reconstruction is considered one of the classic applications of the third generation of artificial intelligence.In the area of computer graphics and computer vision, few-shot 3D reconstruction has attracted the attention of many researchers during the past several decades because of its wide application scenarios and high research value.The area has grown significantly in recent years after the introduction of deep learning methods.The state-of-the-art methods in image-based few-shot 3D reconstruction were reviewed comprehensively and the series of works of our research group were introduced.The various 3D data types were introduced, and their applicability and general processing procedures in 3D reconstruction were discussed.Furthermore, the most widely used datasets were categorized.Finally, some representative experimental results of common 3D reconstructions were presented, and potential future research directions were proposed.

Key words: 3D reconstruction, few-shot learning, human reconstruction

中图分类号: 

No Suggested Reading articles found!