智能科学与技术学报 ›› 2023, Vol. 5 ›› Issue (2): 222-233.doi: 10.11959/j.issn.2096-6652.202319
白天翔1,2, 王双翌1, 刘雅婷1,2, 李汉忠3, 闻艺4,5,6
修回日期:
2023-05-26
出版日期:
2023-06-15
发布日期:
2023-06-10
作者简介:
白天翔(1991- ),男,航天科工集团智能科技研究院有限公司工程师,主要研究方向为群体智能博弈、强化学习、人机协同等基金资助:
Tianxiang BAI1,2, Shuangyi WANG1, Yating LIU1,2, Hanzhong LI3, Yi WEN4,5,6
Revised:
2023-05-26
Online:
2023-06-15
Published:
2023-06-10
Supported by:
摘要:
医疗机器人对于提高医疗效率,减轻患者痛苦,具有重要的社会意义和科研价值。针对医疗机器人的难点,提出了基于ACP平行系统方法的平行医疗机器人概念。平行医疗机器人主要由物理医疗机器人和虚拟医疗机器人组成,通过并联医疗机器人可以实现对整个系统进行管理和控制,对治疗过程进行实验和评估,对医生和患者进行学习和培训。介绍了支撑平行医疗机器人的相关技术,包括机器人仿真、生物力学、3D打印和知识自动化技术等,并结合平行学习提出平行医疗机器人所应具备的描述、预测和处方三大核心功能。最后,以机器人经食管超声系统展示了平行医疗机器人的典型应用。
中图分类号:
白天翔, 王双翌, 刘雅婷, 等. 平行医疗机器人[J]. 智能科学与技术学报, 2023, 5(2): 222-233.
Tianxiang BAI, Shuangyi WANG, Yating LIU, et al. Parallel surgical robots[J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(2): 222-233.
[1] | RAO P P . Robotic surgery:new robots and finally some real competition![J]. World Journal of Urology, 2018,36(4): 537-541. |
[2] | ALLETTI S G , ROSSITTO C , CIANCI S ,et al. The Senhance? surgical robotic system (“Senhance”) for total hysterectomy in obese patients:a pilot study[J]. Journal of Robotic Surgery, 2018,12(2): 229-234. |
[3] | 张思锋, 张泽滈 . 中国养老服务机器人的市场需求与产业发展[J]. 西安交通大学学报(社会科学版), 2017,37(5): 49-58. |
ZHANG S F , ZHANG Z H . Market demand,industrial base and development of aged service robot[J]. Journal of Xi’an Jiaotong University (Social Sciences), 2017,37(5): 49-58. | |
[4] | MOGLIA A , FERRARI V , MORELLI L ,et al. A systematic review of virtual reality simulators for robot-assisted surgery[J]. European Urology, 2016,69(6): 1065-1080. |
[5] | GUIOCHET J , MACHIN M , WAESELYNCK H . Safety-critical advanced robots:a survey[J]. Robotics and Autonomous Systems, 2017,94: 43-52. |
[6] | 王晓娣, 方旭红 . 医疗机器人伦理风险探析[J]. 自然辩证法研究, 2018,34(12): 64-69. |
WANG X D , FANG X H . The study on the ethical risks of medical robots[J]. Studies in Dialectics of Nature, 2018,34(12): 64-69. | |
[7] | 王飞跃 . 平行系统方法与复杂系统的管理和控制[J]. 控制与决策, 2004,19(5): 485-489,514. |
WANG F Y . Parallel system methods for management and control of complex systems[J]. Control and Decision, 2004,19(5): 485-489,514. | |
[8] | 白天翔, 沈震, 刘雅婷 ,等. 平行机器:一种智能机器的管理与控制框架[J]. 智能科学与技术学报, 2019,1(2): 181-191. |
BAI T X , SHEN Z , LIU Y T ,et al. Parallel machine:a framework for the control and management for intelligent machines[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(2): 181-191. | |
[9] | 白天翔, 王帅, 沈震 ,等. 平行机器人与平行无人系统:框架、结构、过程、平台及其应用[J]. 自动化学报, 2017,43(2): 161-175. |
BAI T X , WANG S , SHEN Z ,et al. Parallel robotics and parallel unmanned systems:framework,structure,process,platform and applications[J]. Acta Automatica Sinica, 2017,43(2): 161-175. | |
[10] | 王飞跃 . 机器人的未来发展:从工业自动化到知识自动化[J]. 科技导报, 2015,33(21): 39-44. |
WANG F Y . The future development of robots:from industrial automation to knowledge automation[J]. Science & Technology Review, 2015,33(21): 39-44. | |
[11] | 闫志远, 梁云雷, 杜志江 . 腹腔镜手术机器人技术发展综述[J]. 机器人技术与应用, 2020(2): 24-29. |
YAN Z Y , LIANG Y L , DU Z J . Summary of the development of laparoscopic surgery robot technology[J]. Robot Technique and Application, 2020(2): 24-29. | |
[12] | MATANES E , LAUTERBACH R , BOULUS S ,et al. Robotic laparoendoscopic single-site surgery in gynecology:a systematic review[J]. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2018,231: 1-7. |
[13] | REILEY C E , AKINBIYI T , BURSCHKA D ,et al. Effects of visual force feedback on robot-assisted surgical task performance[J]. The Journal of Thoracic and Cardiovascular Surgery, 2008,135(1): 196-202. |
[14] | MASAYA , KITAGAWA , MS ,et al. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems[J]. The Journal of Thoracic and Cardiovascular Surgery, 2005,129(1): 151-158. |
[15] | NIU G J , PAN B , ZHANG F H ,et al. Dimensional synthesis and concept design of a novel minimally invasive surgical robot[J]. Robotica, 2018,36(5): 715-737. |
[16] | WANG W , LI J M , WANG S X ,et al. System design and animal experiment study of a novel minimally invasive surgical robot[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2016,12(1): 73-84. |
[17] | KIM U , LEE D H , KIM Y B ,et al. S-surge:novel portable surgical robot with multiaxis force-sensing capability for minimally invasive surgery[J]. IEEE/ASME Transactions on Mechatronics, 2017,22(4): 1717-1727. |
[18] | SAADEH Y , VYAS D . Nanorobotic applications in medicine:current proposals and designs[J]. American Journal of Robotic Surgery, 2014,1(1): 4-11. |
[19] | MARTEL S . Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents:a perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks[J]. Biomicrofluidics, 2016,10(2): 021301. |
[20] | BI C . Design of magnetic tumbling microrobots for complex environments and biomedical applications[D]. West Lafayette:Purdue University Graduate School, 2019. |
[21] | RASSWEILER J J , AUTORINO R , KLEIN J ,et al. Future of robotic surgery in urology[J]. BJU international, 2017,120(6): 822-841. |
[22] | ZUO S Y , WANG S X . Current and emerging robotic assisted intervention for Notes[J]. Expert Review of Medical Devices, 2016,13(12): 1095-1105. |
[23] | KALLOO A N , SINGH V K , JAGANNATH S B ,et al. Flexible transgastric peritoneoscopy:a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity[J]. Gastrointestinal Endoscopy, 2004,60(1): 114-117. |
[24] | RAO G V . Transgastric appendectomy in humans[C]// Proceedings of Oral Presentation at Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) Conference.[S.l:s.n.], 2006. |
[25] | BECKER B C , VOROS S , MACLACHLAN R A ,et al. Active guidance of a handheld micromanipulator using visual servoing[C]// Proceedings of 2009 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2009: 339-344. |
[26] | ZUO S Y , HUGHES M , YANG G Z . Novel balloon surface scanning device for intraoperative breast endomicroscopy[J]. Annals of Biomedical Engineering, 2016,44(7): 2313-2326. |
[27] | KOBAYASHI Y , SEKIGUCHI Y , NOGUCHI T ,et al. Development of a robotic system with six-degrees-of-freedom robotic tool manipulators for single-port surgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2015,11(2): 235-246. |
[28] | PETTERSSON A , DAVIS S , GRAY J O ,et al. Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes[J]. Journal of Food Engineering, 2010,98(3): 332-338. |
[29] | KESNER S B , HOWE R D . Force control of flexible catheter robots for beating heart surgery[C]// Proceedings of 2011 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2011: 1589-1594. |
[30] | VERCAUTEREN T , PERCHANT A , MALANDAIN G ,et al. Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy[J]. Medical Image Analysis, 2006,10(5): 673-692. |
[31] | KIM Y J , CHENG S B , KIM S ,et al. Design of a tubular snake-like manipulator with stiffening capability by layer jamming[C]// Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2012: 4251-4256. |
[32] | ZUO S Y , MASAMUNE K , KUWANA K ,et al. Nonmetallic rigid–flexible outer sheath with pneumatic shapelocking mechanism and double curvature structure[M]// Lecture Notes in Computer Science. Berlin,Heidelberg: Springer Berlin Heidelberg, 2011: 169-177. |
[33] | ZARAHN E , ALON L , RYAN S L ,et al. Prediction of motor recovery using initial impairment and fMRI 48 h poststroke[J]. Cerebral Cortex, 2011,21(12): 2712-2721. |
[34] | CURT A , VAN HEDEL H J A , KLAUS D ,et al. Recovery from a spinal cord injury:significance of compensation,neural plasticity,and repair[J]. Journal of Neurotrauma, 2008,25(6): 677-685. |
[35] | GASSERT R , DIETZ V . Rehabilitation robots for the treatment of sensorimotor deficits:a neurophysiological perspective[J]. Journal of Neuroengineering and Rehabilitation, 2018,15(1): 1-15. |
[36] | LI Q L , SONG Y , HOU Z G . Estimation of lower limb periodic motions from sEMG using least squares support vector regression[J]. Neural Processing Letters, 2015,41(3): 371-388. |
[37] | GUO S X , ZHANG F , WEI W ,et al. Kinematic analysis of a novel exoskeleton finger rehabilitation robot for stroke patients[C]// Proceedings of 2014 IEEE International Conference on Mechatronics and Automation. Piscataway:IEEE Press, 2014: 924-929. |
[38] | IQBAL J , TSAGARAKIS N G , CALDWELL D G . Human hand compatible underactuated exoskeleton robotic system[J]. Electronics Letters, 2014,50(7): 494-496. |
[39] | 孙睿, 宋嵘, 汤启宇 . 肌电控制康复机器人协助的脑卒中患者肘关节康复训练的多参数评价[J]. 中国康复医学杂志, 2012,27(9): 802-807. |
SUN R , SONG R , TANG Q Y . Quantitative evaluation of motor function recovery process in chronic stroke patients during myoelectric controlling robot-assisted elbow training[J]. Chinese Journal of Rehabilitation Medicine, 2012,27(9): 802-807. | |
[40] | 侯增广, 赵新刚, 程龙 ,等. 康复机器人与智能辅助系统的研究进展[J]. 自动化学报, 2016,42(12): 1765-1779. |
HOU Z G , ZHAO X G , CHENG L ,et al. Recent advances in rehabilitation robots and intelligent assistance systems[J]. Acta Automatica Sinica, 2016,42(12): 1765-1779. | |
[41] | FLEISCHER C , KONDAK K , WEGE A ,et al. Research on Exoskeletons at the TU Berlin[M]// KR?GER T,WAHL FM.Advances in Robotics Research. Berlin,Heidelberg: Springer, 2009: 335-346. |
[42] | 王飞跃 . 软件定义的系统与知识自动化:从牛顿到默顿的平行升华[J]. 自动化学报, 2015,41(1): 1-8. |
WANG F . Software-defined systems and knowledge automation:a parallel paradigm shift from Newton to Merton[J]. Acta Automatica Sinica, 2015,41(1): 1-8. | |
[43] | 王飞跃 . 关于复杂系统研究的计算理论与方法[J]. 中国基础科学, 2004,6(5): 3-10. |
WANG F Y . Computational theory and method on complex system[J]. China Basic Science, 2004,6(5): 3-10. | |
[44] | 王飞跃 . 关于复杂系统的建模、分析、控制和管理[J]. 复杂系统与复杂性科学, 2006,3(2): 26-34. |
WANG F Y . On the modeling,analysis,control and management of complex systems[J]. Complex Systems and Complexity Science, 2006,3(2): 26-34. | |
[45] | 王飞跃 . 平行控制:数据驱动的计算控制方法[J]. 自动化学报, 2013,39(4): 293-302. |
WANG F . Parallel control:a method for data-driven and computational control[J]. Acta Automatica Sinica, 2013,39(4): 293-302. | |
[46] | 王飞跃 . 人工社会,计算实验,平行系统——关于复杂社会经济系统计算研究的讨论[J]. 复杂系统与复杂性科学, 2004,1(4): 25-35. |
WANG F Y . Artificial societies,computational experiments,and parallel systems:a discussion on computational theory of complex social-economic systems[J]. Complex Systems and Complexity Science, 2004,1(4): 25-35. | |
[47] | 熊刚, 王飞跃, 邹余敏 ,等. 提升乙烯长周期生产管理的平行评估方法[J]. 控制工程, 2010,17(3): 401-406. |
XIONG G , WANG F Y , ZOU Y M ,et al. Parallel evaluation method to improve long period ethylene production management[J]. Control Engineering of China, 2010,17(3): 401-406. | |
[48] | 吕宜生, 陈圆圆, 金峻臣 ,等. 平行交通:虚实互动的智能交通管理与控制[J]. 智能科学与技术学报, 2019,1(1): 21-33. |
LV Y S , CHEN Y Y , JIN J C ,et al. Parallel transportation:virtual-real interaction for intelligent traffic management and control[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 21-33. | |
[49] | WANG F Y . Parallel control and management for intelligent transportation systems:concepts,architectures,and applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2010,11(3): 630-638. |
[50] | WANG K , GOU C , ZHENG N ,et al. Parallel vision for perception and understanding of complex scenes:methods,framework,and perspectives[J]. Artificial Intelligence Review, 2017,48: 299-329. |
[51] | WEI Q , LI H , WANG F Y . Parallel control for continuous-time linear systems:a case study[J]. IEEE/CAA Journal of Automatica Sinica, 2020,7(4): 919-928. |
[52] | LI L , LIN Y , ZHENG N ,et al. Parallel learning:a perspective and a framework[J]. IEEE/CAA Journal of Automatica Sinica, 2017,4(3): 389-395. |
[53] | KENNEY P A , WSZOLEK M F , GOULD J J ,et al. Face,content,and construct validity of dV-trainer,a novel virtual reality simulator for robotic surgery[J]. Urology, 2008,73(6): 1288-1292. |
[54] | MOGLIA A , FERRARI V , MORELLI L ,et al. A systematic review of virtual reality simulators for robot-assisted surgery[J]. European Urology, 2016,69(6): 1065-1080. |
[55] | ROBOTICS S . Most advanced robotics simulation software overview[J]. Smashing Robotics. 2016. |
[56] | TAKAYA K , ASAI T , KROUMOV V ,et al. Simulation environment for mobile robots testing using ROS and Gazebo[C]// Proceedings of 2016 20th International Conference on System Theory,Control and Computing (ICSTCC). Piscataway:IEEE Press, 2016: 96-101. |
[57] | QIAN W , XIA Z Y , XIONG J ,et al. Manipulation task simulation using ROS and Gazebo[C]// Proceedings of 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014). Piscataway:IEEE Press, 2015: 2594-2598. |
[58] | BURRI M , NIKOLIC J , GOHL P ,et al. The EuRoC micro aerial vehicle datasets[J]. The International Journal of Robotics Research, 2016,35(10): 1157-1163. |
[59] | A HOLZAPFEL G , OGDEN R W . Biomechanics:trends in modeling and simulation[M]. Cham: Springer International Publishing, 2017. |
[60] | CHANDA A , RUCHTI T , UNNIKRISHNAN V . Computational modeling of wound suture:a review[J]. IEEE reviews in biomedical engineering, 2018,11: 165-176. |
[61] | KANG K T , KOH Y G , SON J ,et al. Influence of increased posterior tibial slope in total knee arthroplasty on knee joint biomechanics:a computational simulation study[J]. The Journal of Arthroplasty, 2018,33(2): 572-579. |
[62] | BLáZQUEZ-CARMONA P , SANZ-HERRERA J A , MARTíNEZVáZQUEZ F J ,et al. Structural optimization of 3D-printed patientspecific ceramic scaffolds for in vivo bone regeneration in loadbearing defects[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021,121:104613. |
[63] | VIGNALI E , GASPAROTTI E , CAPELLINI K ,et al. Modeling biomechanical interaction between soft tissue and soft robotic instruments:importance of constitutive anisotropic hyperelastic formulations[J]. The International Journal of Robotics Research, 2021,40(1): 224-235. |
[64] | ZHOU L , LI Y , BAI S . A human-centered design optimization approach for robotic exoskeletons through biomechanical simulation[J]. Robotics and Autonomous Systems, 2017,91: 337-347. |
[65] | MAEDA M , KANAI N , KOBAYASHI S ,et al. Endoscopic cell sheet transplantation device developed by using a 3-dimensional printer and its feasibility evaluation in a porcine model[J]. Gastrointestinal Endoscopy, 2015,82(1): 147-152. |
[66] | EPAMINONDA E , DRAKOS T , KALOGIROU C ,et al. MRI guided focused ultrasound robotic system for the treatment of gynaecological tumors[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2016,12(1): 46-52. |
[67] | CULMONE C , SMIT G , BREEDVELD P . Additive manufacturing of medical instruments:a state-of-the-art review[J]. Additive Manufacturing, 2019,27: 461-473. |
[68] | WALKER J M , ELLIOTT D A , KUBICKY C D ,et al. Manufacture and evaluation of 3-dimensional printed sizing tools for use during intraoperative breast brachytherapy[J]. Advances in Radiation Oncology, 2016,1(2): 132-135. |
[69] | MELNYK R , EZZAT B , BELFAST E ,et al. Mechanical and functional validation of a perfused,robot-assisted partial nephrectomy simulation platform using a combination of 3D printing and hydrogel casting[J]. World Journal of Urology, 2020,38(7): 1631-1641. |
[70] | ?PIK R , HUNT A , RISTOLAINEN A ,et al. Development of high fidelity liver and kidney phantom organs for use with robotic surgical systems[C]// Proceedings of 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Piscataway:IEEE Press, 2012: 425-430. |
[71] | AIMAR A , PALERMO A , INNOCENTI B . The role of 3D printing in medical applications:a state of the art[J]. Journal of Healthcare Engineering, 2019:5340616. |
[72] | 李力, 林懿伦, 曹东璞 ,等. 平行学习——机器学习的一个新型理论框架[J]. 自动化学报, 2017,43(1): 1-8. |
LI L , LIN Y L , CAO D P ,et al. Parallel learning - a new framework for machine learning[J]. Acta Automatica Sinica, 2017,43(1): 1-8. | |
[73] | 王飞跃, 李长贵, 国元元 ,等. 平行高特:基于 ACP 的平行痛风诊疗系统框架[J]. 模式识别与人工智能, 2017,30(12): 1057-1068. |
WANG F Y , LI C G , GUO Y Y ,et al. Parallel gout:an ACP-based system framework for gout diagnosis and treatment[J]. Pattern Recognition and Artificial Intelligence, 2017,30(12): 1057-1068. | |
[74] | 王飞跃, 张梅, 孟祥冰 ,等. 平行手术:基于 ACP 的智能手术计算方法[J]. 模式识别与人工智能, 2017,30(11): 961-970. |
WANG F Y , ZHANG M , MENG X B ,et al. Parallel surgery:an ACPbased approach for intelligent operations[J]. Pattern Recognition and Artificial Intelligence, 2017,30(11): 961-970. | |
[75] | WANG S , HOUSDEN J , SINGH D ,et al. Design,testing and modelling of a novel robotic system for trans-oesophageal ultrasound[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2016,12(3): 342-354. |
[76] | WANG S , SINGH D , JOHNSON D ,et al. Robotic ultrasound:view planning,tracking,and automatic acquisition of transesophageal echocardiography[J]. IEEE Robotics & Automation Magazine, 2016,23(4): 118-127. |
[77] | WANG S , SINGH D , LAU D ,et al. Probe tracking and its application in automatic acquisition using a trans-esophageal ultrasound robot[C]// Proceedings of Computer-Assisted and Robotic Endoscopy:Third International Workshop. Heidelberg:Springer, 2017: 14-23. |
[78] | WANG S , HOUSDEN J , ZAR A ,et al. Strategy for monitoring cardiac interventions with an intelligent robotic ultrasound device[J]. Micromachines, 2018,9(2): 65. |
[79] | LASSO A , HEFFTER T , RANKIN A ,et al. PLUS:open-source toolkit for ultrasound-guided intervention systems[J]. IEEE Transactions on Biomedical Engineering, 2014,61(10): 2527-2537. |
[80] | 王飞跃 . 平行医学:从医学的温度到智慧的医学[J]. 智能科学与技术学报, 2021,3(1): 1-9. |
WANG F Y . Parallel medicine:from warmness of medicare to medicine of smartness[J]. Chinese Journal of Intelligent Science and Technology, 2021,3(1): 1-9. | |
[81] | 王拥军, 王飞跃, 王戈 ,等. 平行医院:从医院信息管理系统到智慧医院操作系统[J]. 自动化学报, 2021,47(11): 2585-2599. |
WANG Y J , WANG F Y , WANG G ,et al. Parallel hospitals:from hospital information system (HIS) to hospital smart operating system (HSOS)[J]. Acta Automatica Sinica, 2021,47(11): 2585-2599. | |
[82] | 王飞跃 . 数字医生与平行医疗:从医疗知识自动化到系统化智能医学[J]. 协和医学杂志, 2021,12(6): 829-833. |
WANG F Y . Digital doctors and parallel healthcare:from medical knowledge automation to intelligent metasystems medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2021,12(6): 829-833. |
[1] | 陈德旺, 欧纪祥. 平行模糊控制:虚实互动、相互增强的自学习控制方法[J]. 智能科学与技术学报, 2023, 5(2): 267-273. |
[2] | 张向文, 王飞跃. 平行轮胎的基本架构与关键技术[J]. 智能科学与技术学报, 2022, 4(3): 445-457. |
[3] | 廖泽华, 梁子钰, 周天民, 卢经纬, 魏庆来. 基于平行控制的离散非线性系统的事件触发近似最优控制[J]. 智能科学与技术学报, 2021, 3(4): 435-443. |
[4] | 王飞跃. 平行控制与数字孪生:经典控制理论的回顾与重铸[J]. 智能科学与技术学报, 2020, 2(3): 293-300. |
[5] | 王飞跃,曹东璞,魏庆来. 强化学习:迈向知行合一的智能机制与算法[J]. 智能科学与技术学报, 2020, 2(2): 101-106. |
[6] | 郭超,鲁越,林懿伦,卓凡,王飞跃. 平行艺术:人机协作的艺术创作[J]. 智能科学与技术学报, 2019, 1(4): 335-341. |
[7] | 徐天成,王雪军,卢东东,卢梦叶,林祺,张小强,成艺. 智能针灸机器人关键技术及发展趋势[J]. 智能科学与技术学报, 2019, 1(3): 305-310. |
[8] | 张俊,王飞跃,方舟. 社会能源:从社会中获取能源[J]. 智能科学与技术学报, 2019, 1(1): 7-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|