1 |
XIA H S, GAO Y M, ZHANG J Z. Understanding the adoption context of China's digital currency electronic payment[J]. Financial Innovation, 2023, 9(1): 63.
|
2 |
BENSA?DA A. The linkage between Bitcoin and foreign exchanges in developed and emerging markets[J]. Financial Innovation, 2023, 9(1): 38.
|
3 |
FANG F, VENTRE C, BASIOS M, et al. Cryptocurrency trading: a comprehensive survey[J]. Financial Innovation, 2022, 8(1): 13.
|
4 |
MCNALLY S, ROCHE J, CATON S. Predicting the price of Bitcoin using machine learning[C]//Proceedings of the 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). Piscataway: IEEE Press, 2018: 339-343.
|
5 |
WU C H, LU C C, MA Y F, et al. A new forecasting framework for Bitcoin price with LSTM[C]//Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW). Piscataway: IEEE Press, 2018: 168-175.
|
6 |
章盼. 基于GRU的加密货币价格趋势预测[D]. 湘潭: 湘潭大学, 2019.
|
|
ZHANG P. Cryptocurrency price trend prediction based on GRU[D]. Xiangtan: Xiangtan University, 2019.
|
7 |
柯坤锋. 基于深度学习的比特币价格预测研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
KE K F. Research on bitcoin price prediction based on deep learning[D].Harbin: Harbin Institute of Technology, 2020.
|
8 |
HUA Y Q. Bitcoin price prediction using ARIMA and LSTM[J]. E3S Web of Conferences, 2020, 218: 01050.
|
9 |
荆鹏霏. 基于多模型的比特币价格预测对比研究[D]. 太原: 山西大学, 2021.
|
|
JING P F. A comparative study of Bitcoin price prediction based on multiple models [D]. Taiyuan: Shanxi University, 2021
|
10 |
曾凡成. 基于深度学习方法和分位数回归的加密货币价格预测研究[D]. 南昌: 江西财经大学, 2021.
|
|
ZENG F C. Research on cryptocurrency price prediction based on deep learning method and quantile regression[D]. Nanchang: Jiangxi University of Finance and Economics, 2021.
|
11 |
郭思涵. 基于改进循环神经网络的比特币价格预测及交易策略研究[D]. 上海: 上海师范大学, 2021.
|
|
GUO S H. Research on Bitcoin price forecasting and trading strategy based on improved cyclic neural network[D]. Shanghai: Shanghai Normal University, 2021.
|
12 |
AWOKE T, ROUT M, MOHANTY L, et al. Bitcoin price prediction and analysis using deep learning models[M]//SATAPATHY S C, BHATEJA V, RAMAKRISHNA MURTY M, et al. Communication Software and Networks. Singapore: Springer, 2021: 631-640.
|
13 |
AKYILDIRIM E, CEPNI O, CORBET S, et al. Forecasting mid-price movement of Bitcoin futures using machine learning[J]. Annals of Operations Research, 2023, 330(1): 553-584.
|
14 |
CHEN T H, CHEN M Y, DU G T. The determinants of Bitcoin's price: utilization of GARCH and machine learning approaches[J]. Computational Economics, 2021, 57(1): 267-280.
|
15 |
RANJAN S, KAYAL P, SARAF M. Bitcoin price prediction: a machine learning sample dimension approach[J]. Computational Economics, 2023, 61(4): 1617-1636.
|
16 |
CARAPU?O J, NEVES R, HORTA N. Reinforcement learning applied to Forex trading[J]. Applied Soft Computing Journal, 2018, 73: 783-794.
|
17 |
宋稳柱. 数字货币投资组合策略研究: 基于深度强化学习方法[D]. 南京: 南京信息工程大学, 2019.
|
|
SONG W Z. Research on digital currency portfolio strategy [D]. Nanjing: Nanjing University of Information Science & Technology, 2019.
|
18 |
李尚宜. 基于深度强化学习的金融交易算法实证研究[D]. 南京: 东南大学, 2019.
|
|
LI S Y. An empirical research on financial trading algorithm based on deep reinforcement learning[D]. Nanjing: Southeast University, 2019.
|
19 |
熊礼东. 基于深度强化学习的量化交易研究[D]. 成都: 电子科技大学, 2019.
|
|
XIONG L D. Research on quantitative trading based on deep reinforcement learning[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
|
20 |
ZHANG Z H, ZOHREN S, ROBERTS S. Deep reinforcement learning for trading[J]. The Journal of Financial Data Science, 2020, 2(2): 25-40.
|
21 |
SULIMAN U, VAN ZYL T L, PASKARAMOORTHY A. Cryptocurrency trading agent using deep reinforcement learning[C]//Proceedings of the 2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI). Piscataway: IEEE Press, 2022: 6-10.
|
22 |
许杰, 祝玉坤, 邢春晓. 基于深度强化学习的金融交易算法研究[J]. 计算机工程与应用, 2022, 58(7): 276-285.
|
|
XU J, ZHU Y K, XING C X. Research on financial trading algorithm based on deep reinforcement learning[J]. Computer Engineering and Applications, 2022, 58(7): 276-285.
|
23 |
CUI T X, DING S S, JIN H, et al. Portfolio constructions in cryptocurrency market: a CVaR-based deep reinforcement learning approach[J]. Economic Modelling, 2023, 119: 106078.
|
24 |
CHEN X M, GUO H R. A futures quantitative trading strategy based on a deep reinforcement learning algorithm[C]//Proceedings of the 2023 IEEE 8th International Conference on Big Data Analytics (ICBDA). Piscataway: IEEE Press, 2023: 175-179.
|
25 |
XIAO X C. Quantitative investment decision model based on PPO algorithm[J]. Highlights in Science, Engineering and Technology, 2023, 34: 16-24.
|
26 |
SHIN H G, JEONG S, KIM E Y, et al. Synergistic formulaic alpha generation for quantitative trading based on reinforcement learning [EB]. arXiv preprint, 2024, arXiv: 2401.02710
|
27 |
FU K, YU Y D, LI B. Multi-feature supervised reinforcement learning for stock trading[J]. IEEE Access, 2023, 11: 77840-77855.
|
28 |
项凤涛, 罗俊仁, 谷学强, 等. 群视角下的多智能体强化学习方法综述[J]. 智能科学与技术学报, 2023, 5(3): 313-329.
|
|
XIANG F T, LUO J R, GU X Q, et al. Survey on multi-agent reinforcement learning methods from the perspective of population[J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(3): 313-329.
|
29 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
30 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB]. arXiv preprint, 2017, arXiv: 1706.03762.
|
31 |
CIOSEK K, VUONG Q, LOFTIN R, et al. Better exploration with optimistic actor-critic[EB]. arXiv preprint, 2019, arXiv: 1910.12807.
|
32 |
SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB]. arXiv preprint, 2017, arXiv: 1707.06347.
|
33 |
贺俊杰, 张洁, 张朋, 等. 基于长短期记忆近端策略优化强化学习的等效并行机在线调度方法[J]. 中国机械工程, 2022, 33(3): 329-338.
|
|
HE J J, ZHANG J, ZHANG P, et al. Related parallel machine online scheduling method based on LSTM-PPO reinforcement learning[J]. China Mechanical Engineering, 2022, 33(3): 329-338.
|
34 |
MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[C]//Proceedings of the 33rd International Conference on Machine Learning(ICML). New York: ACM, 2016:1928-1937.
|