智能科学与技术学报 ›› 2024, Vol. 6 ›› Issue (2): 232-243.doi: 10.11959/j.issn.2096-6652.202413

• 学术论文 • 上一篇    

基于多变量逻辑回归的帕金森病认知障碍预测模型

巴梦茹, 尹晓红(), 李少远   

  1. 青岛科技大学自动化与电子工程学院,山东 青岛 266061
  • 收稿日期:2023-11-23 修回日期:2024-04-29 出版日期:2024-06-15 发布日期:2024-07-31
  • 通讯作者: 尹晓红 E-mail:yxh@qust.edu.cn
  • 作者简介:巴梦茹(1997- ),女,青岛科技大学自动化与电子工程学院硕士生,主要研究方向为机器学习、智能优化、智慧医疗。
    尹晓红(1985- ),女,博士,青岛科技大学自动化与电子工程学院副教授,主要研究方向为复杂系统建模与优化、预测控制理论及其应用、绿色建筑节能优化。
    李少远(1965- ),男,博士,青岛科技大学自动化与电子工程学院教授,主要研究方向为网络化分布式系统的自适应预测控制、满意优化控制、生产全过程系统的优化控制、智能控制及工业应用。
  • 基金资助:
    山东省自然科学基金项目(ZR2023ZD49);山东省重点研发项目(重大科技创新工程)(2020CXGC011402);青岛市临床重点专科项目;青岛市科技示范指导项目(20-3-4-37-NSH);山东大学青岛齐鲁医院灵活人才项目(QDKY2019RX05)

A predictive model of cognitive impairment in Parkinson's disease based on multivariate logistic regression

Mengru BA, Xiaohong YIN(), Shaoyuan LI   

  1. School of Automation & Electronic Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
  • Received:2023-11-23 Revised:2024-04-29 Online:2024-06-15 Published:2024-07-31
  • Contact: Xiaohong YIN E-mail:yxh@qust.edu.cn
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2023ZD49);Shandong Province Key Research and Development Project (Major Science and Technology Innovation Project)(2020CXGC011402);Qingdao Clinical Key Specialty Project Fund, Qingdao Science and Technology Demonstration and Guidance Project(20-3-37-NSH);Shandong University Qingdao Qilu Hospital Flexible Talent Project(QDKY2019RX05)

摘要:

帕金森病(Parkinson’s disease,PD)患者常伴随认知障碍,严重影响生活质量,因此对帕金森病认知障碍进行超前预测对于临床诊断和干预至关重要。然而,帕金森病受多变量因素(如年龄、性别、病程时间等)的耦合影响,使得认知障碍的超前预测面临严峻挑战。针对帕金森病认知障碍的多变量耦合特性,采用多变量逻辑回归方法,构建了一种新型列线图模型,旨在超前预测帕金森病患者发生认知障碍(cognitive impairment,CI)的风险。首先,应用最小绝对收缩选择算子(least absolute shrinkage and selection operator,LASSO)算法对可能影响患者认知能力的风险因素进行了分析,筛选出相关性高的临床变量。其次,采用多变量逻辑回归方法分析各变量之间的相关性,构建可视化的新型列线图模型,实现对帕金森病认知障碍的风险超前预测。最后,模型性能评估结果表明新型认知障碍预测模型具有良好的准确性、一致性和临床实用性,可显著地提高临床医生的诊断效率。此外,该模型还实现了对同一预测因子不同值的患者数量及分布的可视化对比和分析,能够辅助临床医生根据每位患者的个人风险制定个性化的医疗管理和咨询方案,有助于更早地展开对患者的干预和治疗,具备一定的临床诊断价值。

关键词: 帕金森病, 认知障碍, 多变量逻辑回归, 列线图

Abstract:

Parkinson's disease (PD) patients were often accompanied by cognitive impairment, which seriously affected the quality of life, so the over-prediction of cognitive impairment in Parkinson's disease was crucial for clinical diagnosis and intervention. However, Parkinson's disease was affected by the coupling of multivariate factors, such as age, gender, and disease duration, which made the overprediction of cognitive impairment a serious challenge. Aiming at the multivariate coupling characteristics of cognitive impairment in Parkinson's disease, in this study, multivariate logistic regression was used to construct a novel column-linear graphical model aiming at over-predicting the risk of cognitive impairment (CI) in Parkinson's disease patients. First, the least absolute shrinkage and selection operator (LASSO) algorithm was applied to analyze the risk factors that may affect the cognitive ability of patients, and the clinical variables with high correlation were screened out. Second, multivariate logistic regression was used to analyze the correlation between variables and construct a visualized novel column-line diagram model to achieve the risk over prediction of cognitive impairment in Parkinson's disease. Finally, the results of model performance evaluation show that the novel cognitive impairment prediction model proposed in this paper has good accuracy, consistency and clinical practicability, which can significantly improve the diagnostic efficiency of clinicians; in addition, the model also realizes the visual comparison and analysis of the number and distribution of patients with different values of the same predictor, which can assist clinicians in formulating personalized healthcare management and consulting programs according to the individual risk of each patient, and help to start the intervention and treatment of the patients at an early stage, and it has a certain clinical diagnostic value.

Key words: Parkinson's disease, cognitive impairment, multivariate logistic regression, nomogram

中图分类号: 

No Suggested Reading articles found!