1 |
VOSSIUS C, LARSEN J P, JANVIN C, et al. The economic impact of cognitive impairment in Parkinson's disease[J]. Movement Disorders, 2011, 26(8): 1541-1544.
|
2 |
LEROI I, MCDONALD K, PANTULA H, et al. Cognitive impairment in Parkinson disease: impact on quality of life, disability, and caregiver burden[J]. Journal of Geriatric Psychiatry and Neurology, 2012, 25(4): 208-214.
|
3 |
KRAMER A A, ZIMMERMAN J E. Assessing the calibration of mortality benchmarks in critical care: the Hosmer-Lemeshow test revisited[J]. Critical Care Medicine, 2007, 35(9): 2052-2056.
|
4 |
李伟凯, 高欣, 纪同俭. 用于轻度认知障碍诊断的群体相似约束功能脑网络建模方法[J]. 智能科学与技术学报, 2019, 1(2): 145-153.
|
|
LI W K, GAO X, JI T J. Method of functional brain network modeling with group similarity constraint for mild cognitive impairment classification[J]. Journal of Intelligent Science and Technology, 2019, 1(2): 145-153.
|
5 |
SAUERBREI W, ROYSTON P, BINDER H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building[J]. Stat Med, 2007, 26(30): 5512-5528.
|
6 |
HU M T, SZEWCZYK‐KRóLIKOWSKI K, TOMLINSON P, et al. Predictors of cognitive impairment in an early stage Parkinson's disease cohort[J]. Movement Disorders, 2014, 29(3): 351-359.
|
7 |
钱忠立, 缪建良, 陈旭. 应用蒙特利尔认知评估量表评价睡眠剥夺对认知功能影响的研究[J]. 中国疗养医学, 2023, 32(7): 721-724.
|
|
QIAN Z L, MIAO J L, CHEN X. Study on the effect of sleep deprivation on cognitive function using the montreal cognitive assessment scale[J]. Chinese Convalescent Medicine, 2023, 32(7): 721-724.
|
8 |
HOBSON P, MEARA J. Mild cognitive impairment in Parkinson's disease and its progression onto dementia: a 16‐year outcome evaluation of the Denbighshire cohort[J]. International Journal of Geriatric Psychiatry, 2015, 30(10): 1048-1055.
|
9 |
NASKAR A, STEZIN A, DHARMAPPA A, et al. Fibrinogen and complement factor H are promising CSF protein biomarkers for Parkinson's disease with cognitive impairment─a proteomics-ELISA-based study[J]. ACS Chemical Neuroscience, 2022, 13(7): 1030-1045.
|
10 |
CHEN B, SONG L, YANG J, et al. P-roteomics of serum exosomes identified fibulin-1 as a novel biomarker for mild cognitive impairment[J]. Neural Regeneration Research, 2023, 18(3): 587-593.
|
11 |
LIU W L, LIN H W, HE X J, et al. Neurogranin as a cognitive biomarker in cerebrospinal fluid and blood exosomes for Alzheimer's disease and mild cognitive impairment[J]. Transl Psychiatry, 2020, 10(125): 1-9.
|
12 |
COSGROVE J, ALTY J E, JAMIESON S. Cognitive impairment in Parkinson's disease[J]. Postgraduate Medical Journal, 2015, 91(1074): 212-220.
|
13 |
MAREK K, JENNINGS D, LASCH S, et al. The Parkinson progression marker initiative (PPMI)[J]. Progress in Neurobiology, 2011, 95(4): 629-635.
|
14 |
杜淑慧, 何小海, 赵晓玲, 等. 基于时空和频域特征的EEG帕金森疾病识别[J] .电子测量技术, 2023, 46(3): 121-127.
|
|
DU S H, HE X H, ZHAO X L, et al. Parkinson's disease recognition by EEG based on spatiotemporal and frequency domain features[J]. Electronic Measure-Ment Technique, 2023, 46(3): 121-127.
|
15 |
TAJIRI Y, WADA-ISOE K, HAMADA M, et al. Comparison of MoCA and M-MSE for evaluating cognitive function in Japanese patients with Parkinson's disease[J] Movement Disorders, 2014: S367-S367.
|
16 |
ZORZON M, CAPUS L, PELLEGRINO A, et al. Familial and environmental risk factors in Parkinson's disease: a case-control study in north‐east Italy[J]. Acta Neurologica Scandinavica, 2002, 105(2): 77-82.
|
17 |
TIBSHIRANI R. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society, 1996, 58(1): 267-288.
|
18 |
段俊伟, 许林灿, 全渝娟. 基于图正则化的贝叶斯宽度学习系统[J]. 智能科学与技术学报, 2022, 4(1): 109-117.
|
|
DUAN J W, XU L C, QUAN Y J. Bayesian width learning system based on graph regularization[J]. Journal of Intelligent Science and Technology, 2022, 4(1): 109-117.
|
19 |
龚永丽, 刘明, 刘蓉, 等. 基于Logistic回归的城市资源环境承载力预测研究——以武汉市为例[J]. 电子测量技术, 2018, 41(17): 42-46.
|
|
GONG Y L, LIU M, LIU R, et al. Prediction of urban resource and environment carrying capacity based on Logistic regression: a case study of Wuhan[J]. Electronic Measurement Technology, 2018, 41(17): 42-46.
|
20 |
曹汉平, 张晓晶, 祝睿杰, 等.数字金融时代机器学习模型在实时反欺诈中的应用与实践[J]. 智能科学与技术学报, 2019, 1(4): 342-351.
|
|
CAO H P, ZHANG X J, ZHU R J, et al. Application and practice of machine learning model in real-time anti-fraud in digital finance era[J]. Journal of Intelligent Science and Technology, 2019, 1(4): 342-351.
|
21 |
陈乐陶, 杨土保, 陈橙, 等. 决策曲线分析在 R 语言中的实现[J]. 中国卫生统计, 2018, 35(6): 955-957.
|
|
CHEN L T, YANG T B, CHEN C, et al. Implementation of decision curve analysis in R language[J]. China Health Statistics, 2018, 35(6): 955-957.
|
22 |
梁子超, 李智炜, 赖铿, 等. 10折交叉验证用于预测模型泛化能力评价及其R软件实现[J]. 中国医院统计, 2020, 18(4): 289-292
|
|
LIANG Z C, LI Z W, LAI K, et al. Application of 10-fold cross-validation in the evaluation of generalization ability of prediction models and the realization in R[J]. Chinese Hospital Statistics, 2020, 18(4): 289-292.
|
23 |
LITVAN I, GOLDMAN J G, TR?STER A I, et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: movement disorder society task force guidelines[J]. Movement disorders, 2012, 27(3): 349-356.
|
24 |
WANG G, LAURI F, EL HASSANI A H. Feature selection by mRMR method for heart disease diagnosis[J]. IEEE Access, 2022, 10: 100786-100796.
|
25 |
GUAN H, YAN R, TANG H, et al. Intelligent fault diagnosis of hydraulic multi-way valve using the improved SECNN-GRU method with mRMR feature selection[J]. Sensors, 2023, 23(23): 9371.
|
26 |
LUSTED L B. Signal detectability and medical decision-making: signal detect-ability studies help radiologists evaluate equipment systems and performance of assistants[J]. Science, 1971, 171(3977): 1217-1219.
|
27 |
PENCINA M J, D'AGOSTINO R B. Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation[J]. Statistics in Medicine, 2004, 23(13): 2109-2123.
|
28 |
郭陈凤, 伍冬睿. 基于典型相关分析的多视图学习方法综述[J]. 智能科学与技术学报, 2022, 4(1): 14-26.
|
|
GUO C F, WU D R. A survey on canonical correlation analysis based multi-view learning[J]. Journal of Intelligence Science and Technology, 2022, 4(1): 14-26.
|