1 |
郑伟斌, 练国富, 张学明, 等. 基于主成分分析和特征图匹配的点云配准方法[J]. 智能科学与技术学报, 2023, 5(4): 543-552.
|
|
ZHENG W B, LIAN G F, ZHANG X M, et al. Point cloud registration method based on principal component analysis and feature map matching[J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(4): 543-552.
|
2 |
于航, 付彦伟, 姜柏言, 等. 基于少量图像的三维重建综述[J]. 智能科学与技术学报, 2022, 4(4): 544-559.
|
|
YU H, FU Y W, JIANG B Y, et al. A survey of image-based few-shot 3D reconstruction[J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 544-559.
|
3 |
缪青海, 王兴霞, 杨静, 等. 从基础智能到通用智能: 基于大模型的GenAI和AGI之现状与展望[J]. 自动化学报, 2024, 50(4): 674-687.
|
|
MIAO Q H, WANG X X, YANG J, et al. From foundation intelligence to general intelligence: the state-of-art and perspectives of GenAI and AGI based on foundation models[J]. Acta Automatica Sinica, 2024, 50(4): 674-687.
|
4 |
李建明, 陈斌, 孙晓飞. 熵启发的分级可微分网络架构搜索[J]. 哈尔滨工业大学学报, 2021, 53(8): 22-28.
|
|
LI J M, CHEN B, SUN X F. Multi-level differentiable architecture search with heuristic entropy[J]. Journal of Harbin Institute of Technology, 2021, 53(8): 22-28.
|
5 |
LI G H, QIAN G C, DELGADILLO I C, et al. SGAS: sequential greedy architecture search[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 1617-1627.
|
6 |
周鹏, 杨军. 采用神经网络架构搜索的三维模型分类[J]. 计算机辅助设计与图形学学报, 2022, 34(5): 722-733.
|
|
ZHOU P, YANG J. 3D model classification based on neural architecture search[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(5): 722-73.
|
7 |
周鹏, 杨军. 基于边缘特征的图神经网络架构搜索[J]. 兰州交通大学学报, 2022, 41(6): 44-53.
|
|
ZHOU P, YANG J. Graph neural architecture search based on edge features[J]. Journal of Lanzhou Jiaotong University, 2022, 41(6): 44-53.
|
8 |
ZOPH B, LE Q V. Neural architecture search with reinforcement learning[EB]. arXiv preprint, 2016, arXiv: 1611.01578.
|
9 |
REAL E, MOORE S, SELLE A, et al. Large-scale evolution of image classifiers[C]//Proceedings of the 34th International Conference on Machine Learning. New York: ACM, 2017: 2902-2911.
|
10 |
LIU H X, SIMONYAN K, YANG Y M. DARTS: differentiable architecture search[EB]. arXiv preprint, 2018, arXiv: 1806.09055.
|
11 |
LIANG H W, ZHANG S F, SUN J C, et al. DARTS+: improved differentiable architecture search with early stopping[EB]. arXiv preprint, 2019, arXiv: 1909.06035.
|
12 |
CHEN X, XIE L X, WU J, et al. Progressive differentiable architecture search: bridging the depth gap between search and evaluation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 1294-1303.
|
13 |
CHU X X, ZHOU T B, ZHANG B, et al. Fair DARTS: eliminating unfair advantages in differentiable architecture search[C]//Proceedings of the 2020 European Conference on Computer Vision. Cham: Springer, 2020: 465-480.
|
14 |
CHU X X, WANG X X, ZHANG B, et al. DARTS-: robustly stepping out of performance collapse without indicators[EB]. arXiv preprint, 2020, arXiv: 2009.01027.
|
15 |
ZELA A, ELSKEN T, SAIKIA T, et al. Understanding and robustifying differentiable architecture search[EB]. arXiv preprint, 2019, arXiv: 1909.09656.
|
16 |
LI Y X, YANG Z H, WANG Y H, et al. Adapting neural architectures between domains[C]//Proceedings of the 34th Conference on Neural Information Processing Systems. New York: ACM, 2020: 789-798.
|
17 |
LIU L Y, WEN Z W, LIU S W, et al. MixSearch: searching for domain generalized medical image segmentation architectures[EB]. arXiv preprint, 2021, arXiv: 2102.13280.
|
18 |
YE P, LI B P, LI Y K, et al. β-DARTS: beta-decay regularization for differentiable architecture search[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 10864-10873.
|
19 |
HERRMANN C, BOWEN R S, ZABIH R. Channel selection using gumbel softmax[C]//Proceedings of the 2020 European Conference on Computer Vision. Cham: Springer, 2020: 241-257.
|
20 |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 5105-5114.
|
21 |
THOMAS H, QI C R, DESCHAUD J E, et al. KPConv: flexible and deformable convolution for point clouds[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 6410-6419.
|
22 |
WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 146-160.
|
23 |
CHU X X, ZHANG B. Noisy differentiable architecture search[EB]. arXiv preprint, 2020, arXiv: 2005.03566.
|
24 |
CAI S F, LI L, HAN X Z, et al. Automatic relation-aware graph network proliferation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 10853-10863.
|
25 |
LI G H, MüLLER M, THABET A, et al. DeepGCNs: can GCNs go as deep as CNNs? [C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 9266-9275.
|
26 |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[EB]. arXiv preprint, 2017, arXiv: 1706.02216.
|
27 |
BASTIDAS A A, TANG H L. Channel attention networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2019: 881-888.
|