Chinese Journal of Intelligent Science and Technology ›› 2021, Vol. 3 ›› Issue (3): 304-311.doi: 10.11959/j.issn.2096-6652.202131
• Special Issue: Intelligent Object Detection and Recognition • Previous Articles Next Articles
Ying LI1, Long CHEN1, Zhaohong HUANG2, Yang SUN2, Guorong CAI2
Revised:
2021-08-18
Online:
2021-09-15
Published:
2021-09-01
Supported by:
CLC Number:
Ying LI, Long CHEN, Zhaohong HUANG, et al. Plant leaf detection technology based on multi-scale CNN feature fusion[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(3): 304-311.
[1] | 张钹 . 人工智能进入后深度学习时代[J]. 智能科学与技术学报, 2019,1(1): 4-6. |
ZHANG B . Artificial intelligence is entering the post deep-learning era[J]. Chinese Journal of Intelligent Science and Technology, 2019,1(1): 4-6. | |
[2] | WANG X Y , WANG Z Y . A novel method for image retrieval based on structure elements’ descriptor[J]. Journal of Visual Communication and Image Representation, 2013,24(1): 63-74. |
[3] | WANG X Y , WANG Z Y . The method for image retrieval based on multi-factors correlation utilizing block truncation coding[J]. Pattern Recognition, 2014,47(10): 3293-3303. |
[4] | UNAR S , WANG X Y , ZHANG C ,et al. Detected text-based image retrieval approach for textual images[J]. IET Image Processing, 2019,13(3): 515-521. |
[5] | WANG X Y , CHEN Z F , YUN J J . An effective method for color image retrieval based on texture[J]. Computer Standards & Interfaces, 2012,34(1): 31-35. |
[6] | HINTON G E , OSINDERO S , TEH Y W . A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006,18(7): 1527-1554. |
[7] | 袁小锋, 王雅琳, 阳春华 ,等. 深度学习在流程工业过程数据建模中的应用[J]. 智能科学与技术学报, 2020,2(2): 107-115. |
YUAN X F , WANG Y L , YANG C H ,et al. The application of deep learning in data-driven modeling of process industries[J]. Chinese Journal of Intelligent Science and Technology, 2020,2(2): 107-115. | |
[8] | BARGSHADY G , ZHOU X J , DEO R C ,et al. Enhanced deep learning algorithm development to detect pain intensity from facial expression images[J]. Expert Systems with Applications, 2020,149: 113305. |
[9] | HAMMAM A A , SOLIMAN M M , HASSANIEN A E . Real-time multiple spatiotemporal action localization and prediction approach using deep learning[J]. Neural Networks, 2020,128: 331-344. |
[10] | LI Y , MA L F , ZHONG Z L ,et al. Deep learning for LiDAR point clouds in autonomous driving:a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,32(8): 3412-3432. |
[11] | WANG X Y , CHEN Z F . A fast fractal coding in application of image retrieval[J]. Fractals, 2009,17(4): 441-450. |
[12] | UNAR S , WANG X Y , WANG C P ,et al. A decisive content based image retrieval approach for feature fusion in visual and textual images[J]. Knowledge-Based Systems, 2019,179: 8-20. |
[13] | UNAR S , WANG X Y , ZHANG C . Visual and textual information fusion using Kernel method for content based image retrieval[J]. Information Fusion, 2018,44: 176-187. |
[14] | 徐优俊, 裴剑锋 . 深度学习在化学信息学中的应用[J]. 大数据, 2017,3(2): 45-66. |
XU Y J , PEI J F . Deep learning for chemo informatics[J]. Big Data Research, 2017,3(2): 45-66. | |
[15] | LIU L , OUYANG W L , WANG X G ,et al. Deep learning for generic object detection:a survey[J]. International Journal of Computer Vision, 2020,128(2): 261-318. |
[16] | GIRSHICK R , DONAHUE J , DARRELL T ,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2014: 580-587. |
[17] | HE K M , ZHANG X Y , REN S Q ,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9): 1904-1916. |
[18] | GIRSHICK R , . Fast R-CNN[C]// Proceedings of 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2015: 1440-1448. |
[19] | REN S Q , HE K M , GIRSHICK R ,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6): 1137-1149. |
[20] | LIN T Y , GOYAL P , GIRSHICK R ,et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,42(2): 318-327. |
[21] | DUAN K W , BAI S , XIE L X ,et al. CenterNet:keypoint triplets for object detection[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE Press, 2019: 6568-6577. |
[22] | REDMON J , DIVVALA S , GIRSHICK R ,et al. You only look once:unified,real-time object detection[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 779-788. |
[23] | ZHONG Z , ZHENG L , KANG G L ,et al. Random erasing data augmentation[J]. arXiv Preprint,2017,arXiv:1708.04896. |
[24] | WANG C Y , LIAO H Y M , WU Y H ,et al. CSPNet:a new backbone that can enhance learning capability of CNN[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE Press, 2020: 1571-1580. |
[25] | LIN T Y , DOLLáR P , GIRSHICK R ,et al. Feature pyramid networks for object detection[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 936-944. |
[26] | YU J H , JIANG Y N , WANG Z Y ,et al. UnitBox:an advanced object detection network[C]// Proceedings of the 24th ACM international conference on Multimedia. New York:ACM Press, 2016: 516-520. |
[27] | MINERVINI M , FISCHBACH A , SCHARR H ,et al. Finely-grained annotated datasets for image-based plant phenotyping[J]. Pattern Recognition Letters, 2016,81: 80-89. |
[28] | VICENTE S , CARREIRA J , AGAPITO L ,et al. Reconstructing PASCAL VOC[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2014: 41-48. |
[29] | EVERINGHAM M , VAN GOOL L , WILLIAMS C K I ,et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010,88(2): 303-338. |
[30] | BRAY T , PAOLI J , SPERBERG-MCQUEEN C M , ,et al. Extensible markup language (XML) 1.0[J]. World Wide Web Journal, 1997,2(4): 29-66. |
[31] | UNAR S , WANG X Y , WANG C P ,et al. New strategy for CBIR by combining low-level visual features with a colour descriptor[J]. IET Image Processing, 2019,13(7): 1191-1200. |
[1] | Zhe HUANG, Yongcai WANG, Deying LI. A survey of 3D object detection algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 7-31. |
[2] | Zhouyu GU, Yuecheng YU, Tiantian Zhe. Rapider-YOLOX: lightweight object detection network with high precision [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 92-103. |
[3] | Jingwei LU, Xiang CHENG, Fei-Yue WANG. Artificial intelligence and deep learning methods for solving differential equations: the state of the art and prospects [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 461-476. |
[4] | Jun ZHANG, Peidong XU, Siyuan CHEN, Tianlu GAO, Yuxin DAI, Ke ZHANG, Hang ZHAO, Jiemai GAO, Yuyang BAI, Jinxing LI, Haoran ZHANG, Xiang LI, Jiuxiang CHEN. A hybrid physics-data-knowledge driven approach for human-machine hybrid-augmented intelligence-based system management and control [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 571-583. |
[5] | Yan CHEN, Xueqin LUO, Wei LIANG, Yongfang XIE. Depression recognition based on emotional information fused with attentional mechanism [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 600-609. |
[6] | Renwu LI, Lingxiao ZHANG, Lin GAO, Chunpeng LI, Hao JIANG. Category-level object pose estimation from depth point cloud [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(2): 246-254. |
[7] | Linhui LI, Bin ZHOU, Weiwei REN, Jing LIAN. Review of pedestrian trajectory prediction methods [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 399-411. |
[8] | Qing TIAN, Rong HU, Zuoyong LI, Yuanzheng CAI, Zhaochai YU. Insulator detection based on SE-YOLOv5s [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(3): 312-321. |
[9] | Wen LIU, Kunlin HU, Yan LI, Zhao LIU. A review of prediction methods for moving target trajectories [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 149-160. |
[10] | Yang ZHANG, Yue HU, Dongrong XIN. A deep learning short-term traffic flow prediction method considering spatial-temporal association [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 172-178. |
[11] | Dongjun LIU, Yuhan WANG, Wenfen LING, Yong PENG, Wanzeng KONG. Emotion recognition based on brain and machine collaborative intelligence [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 65-75. |
[12] | Liang ZHAO, Zhifeng XIE, Kunpeng ZHANG, Yuqing ZHENG, Yuankun FU. Modeling signal propagation in wireless network:an interval type-2 fuzzy ensemble deep learning approach [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 401-411. |
[13] | Sijia TIAN,Qiang GU,Rong HU,Ruige LI,Dingxin HE. A robot sorting method based on deep learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3): 268-274. |
[14] | Fei-Yue WANG,Dongpu CAO,Qinglai WEI. Reinforcement learning:toward action-knowledge merged intelligent mechanisms and algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 101-106. |
[15] | Xiaofeng YUAN,Yalin WANG,Chunhua YANG,Weihua GUI. The application of deep learning in data-driven modeling of process industries [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 107-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|