Chinese Journal of Intelligent Science and Technology ›› 2023, Vol. 5 ›› Issue (2): 143-162.doi: 10.11959/j.issn.2096-6652.202315
• Surveys and Prospectives • Previous Articles Next Articles
Quancheng DU1, Xiao WANG2,3, Lingxi LI4, Huansheng NING1
Revised:
2023-03-24
Online:
2023-06-15
Published:
2023-06-10
Supported by:
CLC Number:
Quancheng DU, Xiao WANG, Lingxi LI, et al. Key problems and progress of pedestrian trajectory prediction methods: the state of the art and prospects[J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(2): 143-162.
"
方法 | 输入信息 | 网络结构 | 优缺点 |
Helbing等人[ | 行人自身状态和周围环境信息 | 基于社会力模型结构 | 优点:模型简单有效、适用性强 缺点:参数敏感、缺少对行人不确定性建模 |
Karamouzas等人[ | 行人位置、速度、加速度等信息以及场景信息 | 基于运动学模型和社会力模型的混合模型 | 优点:长期预测 缺点:训练成本较高、推理速度较慢 |
Trautman等人[ | 历史轨迹信息 | 基于社会力模型和高斯模型结合 | 优点:泛化性强 缺点:实时性较低、模型复杂度较高 |
Zhou等人[ | 行人历史轨迹数据 | 基于混合高斯模型的无监督模型结构 | 优点:高准确性、实时性 缺点:依赖大量数据、可解释性较差 |
Kooij等人[ | 历史轨迹数据和环境上下文信息 | 基于贝叶斯滤波器和运动学模型 | 优点:全局建模、多模态输入、精度高 缺点:计算量大、需要大量训练数据 |
Yan等人[ | 历史轨迹数据信息 | 基于运动学模型和社会力模型结合 | 优点:实时性高、灵活性好、可解释性强 缺点:网络结构复杂、训练难度大 |
Best等人[ | 行人历史轨迹信息、场景上下文信息 | 基于运动学模型和贝叶斯模型结合 | 优点:可预测性强、可解释性好 缺点:计算复杂、依赖先验知识 |
Xie等人[ | 行人位置、姿态、方向信息以及场景上下文信息 | 基于循环神经网络和卷积神经网络以及运动学模型结合 | 优点:建模精准、多模态融合 缺点:模型复杂、需要大量的训练数据和计算资源 |
Rudenko等人[ | 地图、行人速度、位置以及环境信息 | 基于社会力模型和循环神经网络模型结合 | 优点:多模型组合、长期预测、扩展性好 缺点:计算复杂 |
"
方法 | 输入信息 | 网络结构 | 数据集 |
S-LSTM[ | 行人历史轨迹信息 | 基于LSTM网络和社交池机制结合 | ETH/UCY |
MX-LSTM[ | 行人历史轨迹和姿态信息 | 基于LSTM网络、注意机制和社交池化机制 | ETH/UCY、KITTI |
Group LSTM[ | 历史轨迹信息 | 基于LSTM模型于社交池化机制 | ETH/UCY |
Social-Grid LSTM[ | 社会交互信息、时序上下文信息 | 基于社交池化与LSTM结合 | ETH/UCY |
SS-LSTM[ | 历史轨迹、上下文场景信息 | 基于LSTM编解码结构 | ETH/UCY |
Scene-LSTM[ | 场景上下文、行人轨迹点信息 | 基于LSTM网络和CNN网络结合 | ETH/UCY |
Shi等人[ | 历史轨迹信息 | 基于社交池化机制 | GCDC/MOT17 |
StarNet[ | 行人历史轨迹信息 | 基于LSTM和社交池化机制 | ETH/UCY |
SNS-LSTM[ | 场景上下文、社会交互信息 | 基于LSTM网络和池化机制 | ETH/UCY |
"
方法 | 输入信息 | 网络结构 | 数据集 |
Social-GAN[ | 行人历史轨迹信息 | 基于LSTM的编解码器结构 | ETH/UCY |
Sophie[ | 历史轨迹和上下文场景信息 | 基于GAN网络和注意机制结合 | ETH/UCY和SDD |
Social-BiGAT[ | 行人动态特征、场景上下文信息 | 基于GCN和GAN结合 | ETH/UCY |
Social Way[ | 历史轨迹信息 | 基于Info-GAN和注意机制结合 | ETH/UCY |
AEE-GAN[ | 场景上下文、历史轨迹 | 基于InfoGAN网络和LSTM网络架构结合 | ETH/UCY和SDD |
STI-GAN[ | 历史轨迹信息 | 基于GAN和图注意机制网络结合 | ETH/UCY |
Atten-GAN[ | 历史轨迹信息、场景图信息 | 基于GAN和双向循环神经网络结合 | ETH/UCY |
"
方法 | 输入信息 | 网络结构 | 数据集 |
STGAT[ | 历史轨迹信息、场景图像信息 | 基于GCN网络、LSTM网络和GAT网络结合 | ETH/UCY |
RSBG[ | 历史轨迹信息 | 基于GCN网络和LSTM网络、CNN网络结合 | ETH/UCY |
Social-STGCNN[ | 历史轨迹信息 | 基于GCN网络和CNN网络结合 | ETH/UCY |
SGCN[ | 历史轨迹信息、速度、加速度信息 | 基于稀疏有向图建模时空关系 | ETH/UCY |
DMRGCN[ | 历史轨迹信息、行人速度信息 | 基于GCN和注意机制结合 | ETH/UCY |
SSAGCN[ | 历史轨迹信息 | 基于GCN、TCN和注意机制结合 | ETH/UCY、SDD |
AST-GNN[ | 历史轨迹信息 | 基于GCN和注意机制结合 | ETH/UCY |
Pedestrian Graph +[ | 行人位姿、场景上下文信息、车辆速度信息 | 基于GCN网络和卷积神经网络结合 | JAAD/PIE |
"
方法 | 输入信息 | 网络结构 | 数据集 |
Saleh等人[ | 历史轨迹、上下文信息 | 基于Transformer的编解码结构 | ETH/UCY |
STAR[ | 历史轨迹信息 | 基于图卷积(GCN)和Transformer结构结合 | ETH/UCY |
Giuliari等人[ | 历史轨迹信息 | 基于Transformer的编解码结构 | ETH/UCY、SDD |
Yin等人[ | 历史轨迹、上下文信息 | 基于Transformer的编解码结构 | JAAD/PIE |
Yao等人[ | 历史轨迹信息 | 基于端到端的Transformer编解码结构 | ETH/UCY |
Li等人[ | 历史轨迹信息、RGB图像信息、场景语义信息 | 基于图卷积网络和Transformer网络结合 | ETH/UCY、VIRAT/ActEV |
Su等人[ | 历史轨迹信息、行人速度和加速度信息 | 基于交叉模态的Transformer网络架构 | JAAD/PIE |
"
数据集 | Agent | 场景数量 | 传感器 | 时长 | 位置 |
UCY[ | 行人 | 3 | 相机 | 29.5 min | 校园、城市街道 |
ETH[ | 行人 | 2 | 相机 | 25 min | 大学入口、人行道、酒店入口 |
PETS 2009[ | 行人 | 10 | 相机 | 20 h | 公共场所、室外场景 |
Caltech Pedestrian[ | 行人 | 7 | 车载相机 | 10 h | 城市道路 |
SDD[ | 车辆、行人 | 20 | 相机 | — | 校园 |
JAAD[ | 行人 | 346 | 车载相机 | 240 h | 城镇地区、城乡地区 |
ActEV/VIR[ | 行人、车辆、船只等 | 12 | 高清相机 | 280 h | 路口场景、街道 |
Crowd Human[ | 行人 | 15 000 | 相机 | — | 城市路口、商场街道 |
InD[ | 车辆、行人、自行车 | 4 | 相机 | 10 h | 城市路口 |
PIE[ | 行人、车辆 | — | 车载相机 | 6h | 城镇地区、城乡地区 |
STCrowd[ | 行人 | 9 | 激光雷达、相机 | — | 交通路口 |
[1] | SHARMA N , DHIMAN C , INDU S . Pedestrian intention prediction for autonomous vehicles:a comprehensive survey[J]. Neurocomputing, 2022,508: 120-152. |
[2] | CAESAR H , BANKITI V , LANG A H ,et al. nuScenes:a multimodal dataset for autonomous driving[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020: 11618-11628. |
[3] | RUDENKO A , PALMIERI L , HERMAN M ,et al. Human motion trajectory prediction:a survey[J]. The International Journal of Robotics Research, 2020,39(8): 895-935. |
[4] | R?SMANN C , OELJEKLAUS M , HOFFMANN F ,et al. Online trajectory prediction and planning for social robot navigation[C]// Proceedings of 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Piscataway:IEEE Press, 2017: 1255-1260. |
[5] | BALLAN L , CASTALDO F , ALAHI A ,et al. Knowledge transfer for scene-specific motion prediction[M]. Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 697-713. |
[6] | SIGHENCEA B I , STANCIU R I , C?LEANU C D . A review of deep learning-based methods for pedestrian trajectory prediction[J]. Sensors, 2021,21(22): 7543. |
[7] | 孔玮, 刘云, 李辉 ,等. 基于深度学习的行人轨迹预测方法综述[J]. 控制与决策, 2021,36(12): 2841-2850. |
KONG W , LIU Y , LI H ,et al. Survey of pedestrian trajectory prediction methods based on deep learning[J]. Control and Decision, 2021,36(12): 2841-2850. | |
[8] | KORBMACHER R , TORDEUX A . Review of pedestrian trajectory prediction methods:comparing deep learning and knowledge-based approaches[J]. IEEE Transactions on Intelligent Transportation Systems, 2022,23(12): 24126-24144. |
[9] | 陈敏, 曾凯, 沈韬 ,等. 基于注意力机制和稀疏图卷积的行人轨迹预测[J]. 激光与光电子学进展, 2023,60(10): 1010013. |
CHEN M , ZENG K , SHEN T ,et al. Pedestrian trajectory prediction based on attention mechanism and sparse graph convolution[J]. Laser and Optoelectronics Progress, 2023,60(10): 1010013. | |
[10] | XU Y , WANG L C , WANG Y Z ,et al. Adaptive trajectory prediction via transferable GNN[C]// Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2022: 6510-6521. |
[11] | 裴炤, 邱文涛, 王淼 ,等. 基于Transformer动态场景信息生成对抗网络的行人轨迹预测方法[J]. 电子学报, 2022,50(7): 1537-1547. |
PEI Z , QIU W T , WANG M ,et al. Pedestrian trajectory prediction method using dynamic scene infor? mation based transformer generative adversarial network[J]. Acta Electronica Sinica, 2022,50(7): 15371547. | |
[12] | HELBING D , MOLNáR P . Social force model for pedestrian dynamics[J]. Physical Review E, 1995,51(5): 4282-4286. |
[13] | YAN X . Modeling local behavior for predicting social interactions towards human tracking[J]. Pattern Recognition, 2014,47(4): 1626-1641. |
[14] | HELBING D , FARKAS I , VICSEK T . Simulating dynamical features of escape panic[J]. Nature, 2000,407(6803): 487-490. |
[15] | SCH?LLER C , ARAVANTINOS V , LAY F ,et al. What the constant velocity model can teach us about pedestrian motion prediction[J]. IEEE Robotics and Automation Letters, 2020,5(2): 1696-1703. |
[16] | FOX E , SUDDERTH E B , JORDAN M I ,et al. Bayesian nonparametric inference of switching dynamic linear models[J]. IEEE Transactions on Signal Processing, 2011,59(4): 1569-1585. |
[17] | KOOIJ J F P , SCHNEIDER N , FLOHR F ,et al. Context-based pedestrian path prediction[M]// Computer Vision - ECCV 2014. Cham: Springer International Publishing, 2014: 618-633. |
[18] | SCHNEIDER N , GAVRILA D M . Pedestrian path prediction with recursive Bayesian filters:a comparative study[M]// Lecture Notes in Computer Science. Berlin,Heidelberg: Springer Berlin Heidelberg, 2013: 174-183. |
[19] | DENDORFER P , ELFLEIN S , LEAL-TAIXé L . MG-GAN:a multigenerator model preventing out-of-distribution samples in pedestrian trajectory prediction[C]// Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2022: 13138-13147. |
[20] | GIULIARI F , HASAN I , CRISTANI M ,et al. Transformer networks for trajectory forecasting[C]// Proceedings of 2020 25th International Conference on Pattern Recognition (ICPR). Piscataway:IEEE Press, 2021: 10335-10342. |
[21] | GUPTA A , JOHNSON J , LI F F ,et al. Social GAN:socially acceptable trajectories with generative adversarial networks[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 2255-2264. |
[22] | ALAHI A , GOEL K , RAMANATHAN V ,et al. Social LSTM:human trajectory prediction in crowded spaces[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016: 961-971. |
[23] | 李琳辉, 周彬, 任威威 ,等. 行人轨迹预测方法综述[J]. 智能科学与技术学报, 2021,3(4): 399-411. |
LI L H , ZHOU B , REN W W ,et al. Review of pedestrian trajectory prediction methods[J]. Chinese Journal of Intelligent Science and Technology, 2021,3(4): 399-411. | |
[24] | SHI X D , SHAO X W , GUO Z L ,et al. Pedestrian trajectory prediction in extremely crowded scenarios[J]. Sensors, 2019,19(5): 1223. |
[25] | SEYFRIED A , STEFFEN B , KLINGSCH W ,et al. The fundamental diagram of pedestrian movement revisited[J]. Journal of Statistical Mechanics:Theory and Experiment, 2005,2005(10): 10002. |
[26] | KENNEDY J , EBERHART R . Particle swarm optimization[C]// Proceedings of ICNN'95 - International Conference on Neural Networks. Piscataway:IEEE Press, 2002: 1942-1948. |
[27] | JIA H F , LIN Y , LUO Q Y ,et al. Multi-objective optimization of urban road intersection signal timing based on particle swarm optimization algorithm[J]. Advances in Mechanical Engineering, 2019,11(4): 168781401984249. |
[28] | MEHRAN R , OYAMA A , SHAH M . Abnormal crowd behavior detection using social force model[C]// Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2009: 935-942. |
[29] | PELLEGRINI S , ESS A , SCHINDLER K ,et al. You'll never walk alone:modeling social behavior for multi-target tracking[C]// Proceedings of 2009 IEEE 12th International Conference on Computer Vision. Piscataway:IEEE Press, 2010: 261-268. |
[30] | CHOI W , SAVARESE S . A unified framework for multi-target tracking and collective activity recognition[M]// Computer Vision – ECCV 2012. Heidelberg: Springer Berlin Heidelberg, 2012: 215-230. |
[31] | RUDENKO A , PALMIERI L , ARRAS K O . Joint long-term prediction of human motion using a planning-based social force approach[C]// Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2018: 4571-4577. |
[32] | TRAUTMAN P , KRAUSE A . Unfreezing the robot:navigation in dense,interacting crowds[C]// Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE Press, 2010: 797-803. |
[33] | PELLEGRINI S , ESS A , VAN GOOL L . Improving data association by joint modeling of pedestrian trajectories and groupings[M]// Computer Vision - ECCV 2010. Heidelberg: Springer Berlin Heidelberg, 2010: 452-465. |
[34] | KARAMOUZAS I , HEIL P , VAN BEEK P ,et al. A predictive collision avoidance model for pedestrian simulation[M]// Motion in Games. Berlin,Heidelberg: Springer Berlin Heidelberg, 2009: 41-52. |
[35] | ZHOU B L , WANG X G , TANG X O . Understanding collective crowd behaviors:learning a Mixture model of Dynamic pedestrian-Agents[C]// Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2012: 2871-2878. |
[36] | FOX E , SUDDERTH E B , JORDAN M I ,et al. Bayesian nonparametric inference of switching dynamic linear models[J]. IEEE Transactions on Signal Processing, 2011,59(4): 1569-1585. |
[37] | BEST G , FITCH R . Bayesian intention inference for trajectory prediction with an unknown goal destination[C]// Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2015: 5817-5823. |
[38] | XIE D , SHU T M , TODOROVIC S ,et al. Learning and inferring "dark matter" and predicting human intents and trajectories in videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(7): 1639-1652. |
[39] | XUE H , HUYNH D Q , REYNOLDS M . SS-LSTM:a hierarchical LSTM model for pedestrian trajectory prediction[C]// Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway:IEEE Press, 2018: 1186-1194. |
[40] | MANH H , ALAGHBAND G . Scene-lstm:a model for human trajectory prediction[J]. arXiv preprint, 2018,arXiv:1808.04018. |
[41] | HASAN I , SETTI F , TSESMELIS T ,et al. MX-LSTM:mixing tracklets and vislets to jointly forecast trajectories and head poses[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 6067-6076. |
[42] | BISAGNO N , ZHANG B , CONCI N . Group LSTM:group trajectory prediction in crowded scenarios[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2019: 213-225. |
[43] | CHENG B , XU X , ZENG Y J ,et al. Pedestrian trajectory prediction via the Social-Grid LSTM model[J]. The Journal of Engineering, 2018(16): 1468-1474. |
[44] | ZHU Y L , QIAN D H , REN D C ,et al. StarNet:pedestrian trajectory prediction using deep neural network in star topology[C]// Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2020: 8075-8080. |
[45] | LERNER A , CHRYSANTHOU Y , LISCHINSKI D . Crowds by example[J]. Computer Graphics Forum, 2007,26(3): 655-664. |
[46] | SADEGHIAN A , KOSARAJU V , SADEGHIAN A ,et al. SoPhie:an attentive GAN for predicting paths compliant to social and physical constraints[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020: 1349-1358. |
[47] | AMIRIAN J , HAYET J B , PETTRé J . Social ways:learning multimodal distributions of pedestrian trajectories with GANs[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway:IEEE Press, 2020: 2964-2972. |
[48] | HUANG L , ZHUANG J H , CHENG X M ,et al. STI-GAN:multimodal pedestrian trajectory prediction using spatiotemporal interactions and a generative adversarial network[J]. IEEE Access, 2021,9: 50846-50856. |
[49] | LAI W C , XIA Z X , LIN H S ,et al. Trajectory prediction in heterogeneous environment via attended ecology embedding[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York:ACM, 2020: 202-210. |
[50] | KOSARAJU V , SADEGHIAN A , MARTíN-MARTíN R , ,et al. SocialBiGAT:Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks[J]. Advances in Neural Information Processing Systems, 2019:32. |
[51] | VELI?KOVI? P , CUCURULL G , CASANOVA A ,et al. Graph Attention Networks[J]. arXiv preprint, 2017,arXiv:1710.10903. |
[52] | CHEN X , DUAN Y , HOUTHOOFT R ,et al. InfoGAN:interpretable representation learning by information maximizing generative adversarial nets[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. New York:ACM, 2016: 2180-2188. |
[53] | FANG F , ZHANG P P , ZHOU B ,et al. Atten-GAN:pedestrian trajectory prediction with GAN based on attention mechanism[J]. Cognitive Computation, 2022,14(6): 2296-2305. |
[54] | MOHAMED A , QIAN K , ELHOSEINY M ,et al. Social-STGCNN:a social spatio-temporal graph convolutional neural network for human trajectory prediction[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020: 14412-14420. |
[55] | HUANG Y F , BI H K , LI Z X ,et al. STGAT:modeling spatialtemporal interactions for human trajectory prediction[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2020: 6271-6280. |
[56] | SHI L S , WANG L , LONG C J ,et al. SGCN:sparse graph convolution network for pedestrian trajectory prediction[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2021: 8990-8999. |
[57] | YAN S J , XIONG Y J , LIN D H . Spatial temporal graph convolutional networks for skeleton-based action recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018,32(1): 12328. |
[58] | SUN J H , JIANG Q H , LU C W . Recursive social behavior graph for trajectory prediction[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020: 657-666. |
[59] | BAE I , JEON H G . Disentangled multi-relational graph convolutional network for pedestrian trajectory prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021,35(2): 911-919. |
[60] | CADENA P R G , QIAN Y Q , WANG C X ,et al. Pedestrian graph:a fast pedestrian crossing prediction model based on graph convolutional networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022,23(11): 21050-21061. |
[61] | LYU P , WANG W , WANG Y ,et al. SSAGCN:social soft attention graph convolution network for pedestrian trajectory prediction[J]. arXiv preprint, 2021,arXiv:2112.02459. |
[62] | ZHOU H , REN D C , XIA H X ,et al. AST-GNN:an attention-based spatio-temporal graph neural network for Interaction-aware pedestrian trajectory prediction[J]. Neurocomputing, 2021,445: 298-308. |
[63] | 田永林, 王雨桐, 王建功 ,等. 视觉Transformer研究的关键问题:现状及展望[J]. 自动化学报, 2022,48(4): 957-979. |
TIAN Y L , WANG Y T , WANG J G ,et al. Key problems and progress of vision transformers:the state of the art and prospects[J]. Acta Automatica Sinica, 2022,48(4): 957-979. | |
[64] | DEVLIN J , CHANG M W , LEE K ,et al. BERT:pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint, 2018,arXiv:1810.04805. |
[65] | RADFORD A , NARASIMHAN K Improving language understanding by generative pre-training[Z]. 2018. |
[66] | WANG A , SINGH A , MICHAEL J ,et al. GLUE:a multi-task benchmark and analysis platform for natural language understanding[J]. arXiv preprint, 2018,arXiv:1804.07461. |
[67] | CARION N , MASSA F , SYNNAEVE G ,et al. End-to-end object detection with transformers[M]// Computer Vision - ECCV 2020. Cham: Springer International Publishing, 2020: 213-229. |
[68] | DOSOVITSKIY A , BEYER L , KOLESNIKOV A ,et al. An image is worth 16x16 words:transformers for image recognition at scale[J]. arXiv preprint, 2020,arXiv:2010.11929. |
[69] | FU J , LIU J , TIAN H J ,et al. Dual attention network for scene segmentation[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020: 3141-3149. |
[70] | YAO H Y , WAN W G , LI X . End-to-end pedestrian trajectory forecasting with transformer network[J]. ISPRS International Journal of GeoInformation, 2022,11(1): 44. |
[71] | YU C J , MA X , REN J W ,et al. Spatio-temporal graph transformer networks for pedestrian trajectory prediction[M]// Computer Vision ECCV 2020. Cham: Springer International Publishing, 2020: 507-523. |
[72] | SALEH K . Pedestrian trajectory prediction using context-augmented transformer networks[J]. arXiv preprint, 2020,arXiv:2012.01757. |
[73] | YIN Z , LIU R , XIONG Z ,et al. Multimodal transformer network for pedestrian trajectory prediction[C]// IJCAI.[S.l.:s.n.], 2021: 1259-1265. |
[74] | LI L H , PAGNUCCO M , SONG Y . Graph-based spatial transformer with memory replay for multi-future pedestrian trajectory prediction[C]// Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2022: 2221-2231. |
[75] | SU Z X , HUANG G , ZHANG S Y ,et al. Crossmodal transformer based generative framework for pedestrian trajectory prediction[C]// Proceedings of 2022 International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2022: 2337-2343. |
[76] | ROBICQUET A , SADEGHIAN A , ALAHI A ,et al. Learning social etiquette:human trajectory understanding in crowded scenes[M]// Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 549-565. |
[77] | OH S , HOOGS A , PERERA A ,et al. A large-scale benchmark dataset for event recognition in surveillance video[C]// Proceedings of CVPR. Piscataway:IEEE Press, 2011: 3153-3160. |
[78] | GRIFFIN G , HOLUB A , PERONA P Caltech-256 object category dataset[Z]. 2007. |
[79] | ELLIS A , FERRYMAN J . PETS2010 and PETS2009 evaluation of results using individual ground truthed single views[C]// Proceedings of 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway:IEEE Press, 2010: 135-142. |
[80] | SHAO S , ZHAO Z , LI B ,et al. Crowdhuman:a benchmark for detecting human in a crowd[J]. arXiv preprint, 2018,arXiv:1805.00123. |
[81] | BOCK J , KRAJEWSKI R , MOERS T ,et al. The InD dataset:a drone dataset of naturalistic road user trajectories at German intersections[C]// Proceedings of 2020 IEEE Intelligent Vehicles Symposium (IV). Piscataway:IEEE Press, 2021: 1929-1934. |
[82] | KOTSERUBA I , RASOULI A , TSOTSOS J K . Joint attention in autonomous driving (JAAD)[J]. arXiv preprint, 2016,arXiv:1609.04741. |
[83] | RASOULI A , KOTSERUBA I , KUNIC T ,et al. PIE:a large-scale dataset and models for pedestrian intention estimation and trajectory prediction[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2020: 6261-6270. |
[84] | CONG P , ZHU X , QIAO F ,et al. Stcrowd:a multimodal dataset for pedestrian perception in crowded scenes[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2022: 19608-19617. |
[1] | Zhe HUANG, Yongcai WANG, Deying LI. A survey of 3D object detection algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 7-31. |
[2] | Jinna LI, Weiran CHENG. An overview of optimal consensus for data driven multi-agent system based on reinforcement learning [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(4): 327-340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|