Chinese Journal of Intelligent Science and Technology ›› 2023, Vol. 5 ›› Issue (2): 180-199.doi: 10.11959/j.issn.2096-6652.202317
• Surveys and Prospectives • Previous Articles Next Articles
Jun HUANG1,2,3, Yonglin TIAN1,4, Xingyuan DAI1,5, Xiao WANG3,6,7,8, Zhixing PING4,5,9
Revised:
2023-05-26
Online:
2023-06-15
Published:
2023-06-10
Supported by:
CLC Number:
Jun HUANG, Yonglin TIAN, Xingyuan DAI, et al. Deep learning-based multimodal trajectory prediction methods for autonomous driving: state of the art and perspectives[J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(2): 180-199.
"
数据集 | 年份 | 交通参与者 | 传感器 | 场景 | 数据内容 | 基于此数据集的算法 |
NuScenes[ | 2020年 | 车辆、行人、自行车 | 雷达、相机 | 城市 | 驾驶轨迹、高清地图 | MHA-JAM |
Lyft[ | 2020年 | 车辆、行人、自行车 | 雷达、相机 | 城市 | 驾驶轨迹、高清地图 | Gatformer |
Waymo[ | 2020年 | 车辆、行人、自行车 | 雷达、相机 | 城市 | 驾驶轨迹、高清地图 | Wayformer、DenseTNT |
Argoverse[ | 2019年 | 车辆 | 雷达、相机 | 无信号灯路口 | 驾驶轨迹、高清地图 | mmTransformer、HOME、TrajFormer、VertorNet |
INTERACTION[ | 2019年 | 车辆、行人 | 无人机、相机 | 高速公路、无信号灯路口、有信号灯路口、环岛 | 驾驶轨迹、高清地图 | GOHOME、THOMAS、TNT |
HighD[ | 2018年 | 车辆 | 无人机 | 城市路口 | 驾驶轨迹、车道 | MHA-LSTM |
Apolloscape[ | 2018年 | 车辆、行人、自行车 | 雷达、相机 | 城市高速公路 | 驾驶轨迹 | AI-TP、S2TNet、GRIP++ |
KITTI[ | 2013年 | 行人、自行车 | 雷达、相机 | 城市高速公路 | 图像、点云 | DESIRE |
NGSIM | 2006年 | 车辆 | 相机 | 高速公路路口 | 驾驶轨迹、车道 | Maneuver based LSTM、GRIP++ |
"
研究问题 | 解决办法 |
时间、空间维度编码问题: | mmTransformer:通过使用3个堆叠Transformer对环境信息、历史轨迹及车辆特征信息分别编码; |
时间维度、空间维度信息如何编码? | LAformer:时间密集型多模态轨迹预测模型,通过两阶段方法生成随时间变化、可调整的多模态轨迹并建模 |
是否会有信息丢失? | 交互; |
AgentFormer:时间编码器代替位置编码器,通过时间戳保留时间信息 | |
交互问题(自注意力计算): | mmTransformer:对交互信息编码,对车辆间依赖关系建模; |
智能体间交互如何建模? | AgentFormer:Agent-Aware机制分别计算智能体间和智能体自身内在注意力; |
有什么样的依赖关系? | TrajFormer:通过自注意力解决提取局部特征受限问题,更好地提取环境交互信息; |
是否有交互信息丢失问题?如何解决? | MPTP:通过补丁合并和移位窗口方法降低自注意力计算复杂性; |
自注意力计算效率如何提升? | Gatformer:对智能体-智能体、智能体-环境交互建模 |
Spatio-Channel TF:通过基于挤压激励网络的Channel模块捕获相邻Channel之间的相互作用,进而捕获多智 | |
多智能体交互问题: | 能体间的交互信息; |
多智能体交互信息如何捕获? | GatFormer:采用灵活的图结构,降低计算复杂度,通过交互权重分配提高性能和模型的可解释性,同时保证 |
鲁棒性 | |
可解释性问题: | |
可解释性差的原因? | MPTP:Swim Transformer编码环境信息,GAR编码历史轨迹,生成可解释性高的预测轨迹 |
如何提高可解释性? | |
规模化问题: | |
规模化难的原因? | Wayformer:分析前融合、后融合、分层融合的利弊,为TF如何扩展到大型多维序列提供解方案 |
编码模块如何优化? |
[87] | ZHANG Y , ZOU Y , TANG J ,et al. A lane-changing prediction method based on temporal convolution network[J]. arXiv preprint, 2020,arXiv:2011.01224. |
[88] | GILLES T , SABATINI S , TSISHKOU D ,et al. HOME:heatmap output for future motion estimation[C]// Proceedings of 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). Piscataway:IEEE Press, 2021: 500-507. |
[89] | GILLES T , SABATINI S , TSISHKOU D ,et al. GOHOME:graphoriented heatmap output for future motion estimation[C]// Proceedings of 2022 International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2022: 9107-9114. |
[90] | GILLES T , SABATINI S , TSISHKOU D ,et al. Thomas:trajectory heatmap output with learned multi-agent sampling[J]. arXiv preprint. 2021,arXiv:2110.06607. |
[91] | YE M S , CAO T Y , CHEN Q F . TPCN:temporal point cloud networks for motion forecasting[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2021: 11313-11322. |
[92] | GIULIARI F , HASAN I , CRISTANI M ,et al. Transformer networks for trajectory forecasting[C]// Proceedings of 2020 25th International Conference on Pattern Recognition (ICPR). Piscataway:IEEE Press, 2020: 10335-10342. |
[93] | ALTCHé F , DE LA FORTELLE A . An LSTM network for highway trajectory prediction[C]// Proceedings of 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). Piscataway:IEEE Press, 2017: 353-359. |
[94] | ZYNER A , WORRALL S , NEBOT E . Naturalistic driver intention and path prediction using recurrent neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2019,21(4): 1584-1594. |
[95] | PARK S H , KIM B , KANG C M ,et al. Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture[C]// Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV). Piscataway:IEEE Press, 2018: 1672-1678. |
[96] | SONG H , DING W , CHEN Y ,et al. Pip:planning-informed trajectory prediction for autonomous driving[C]// Proceedings of Computer VisionECCV 2020:16th European Conference.[S.l.:s.n.], 2020: 598-614. |
[97] | XIN L , WANG P , CHAN C Y ,et al. Intention-aware long horizon trajectory prediction of surrounding vehicles using dual LSTM networks[C]// Proceedings of 2018 21st International Conference on Intelligent Transportation Systems (ITSC). Piscataway:IEEE Press, 2018: 1441-1446. |
[98] | SHIRAZI M S , MORRIS B T . Trajectory prediction of vehicles turning at intersections using deep neural networks[J]. Machine Vision and Applications, 2019,30(6): 1097-1109. |
[99] | XING Y , LV C , CAO D P . Personalized vehicle trajectory prediction based on joint time-series modeling for connected vehicles[J]. IEEE Transactions on Vehicular Technology, 2020,69(2): 1341-1352. |
[100] | ZHANG T , SONG W J , FU M Y ,et al. Vehicle motion prediction at intersections based on the turning intention and prior trajectories model[J]. IEEE/CAA Journal of Automatica Sinica, 2021,8(10): 1657-1666. |
[101] | BAE S , SAXENA D , NAKHAEI A ,et al. Cooperation-aware lane change maneuver in dense traffic based on model predictive control with recurrent neural network[C]// Proceedings of 2020 American Control Conference (ACC). Piscataway:IEEE Press, 2020: 1209-1216. |
[102] | MO X Y , XING Y , LV C . Interaction-aware trajectory prediction of connected vehicles using CNN-LSTM networks[C]// Proceedings of IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society. Piscataway:IEEE Press, 2020: 5057-5062. |
[103] | HUANG Z , WANG J , PI L ,et al. LSTM based trajectory prediction model for cyclist utilizing multiple interactions with environment[J]. Pattern Recognition, 2021,112:107800. |
[104] | WANG S B , ZHAO P , YU B ,et al. Vehicle trajectory prediction by knowledge-driven LSTM network in urban environments[J]. Journal of Advanced Transportation, 2020,2020: 1-20. |
[105] | JU C , WANG Z , LONG C ,et al. Interaction-aware Kalman neural networks for trajectory prediction[C]// Proceedings of 2020 IEEE Intelligent Vehicles Symposium (IV). Piscataway:IEEE Press, 2020: 1793-1800. |
[106] | LIN L , LI W Z , BI H K ,et al. Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms[J]. IEEE Intelligent Transportation Systems Magazine, 2022,14(2): 197-208. |
[107] | SHI X J , GAO Z H , LAUSEN L ,et al. Deep learning for precipitation nowcasting:a benchmark and a new model[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM, 2017: 5622-5632. |
[108] | DING W C , CHEN J , SHEN S J . Predicting vehicle behaviors over an extended horizon using behavior interaction network[C]// Proceedings of 2019 International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2019: 8634-8640. |
[1] | LEVINSON J , ASKELAND J , BECKER J ,et al. Towards fully autonomous driving:systems and algorithms[C]// Proceedings of 2011 IEEE Intelligent Vehicles Symposium (IV). Piscataway:IEEE Press, 2011: 163-168. |
[2] | MAURER M , GERDES J C , LENZ B ,et al. Autonomous driving:technical,legal and social aspects[M]. Springer Berlin: Nature, 2016. |
[3] | YURTSEVER E , LAMBERT J , CARBALLO A ,et al. A survey of autonomous driving:common practices and emerging technologies[J]. IEEE Access, 2020,8: 58443-58469. |
[4] | 张慧, 王坤峰, 王飞跃 . 深度学习在目标视觉检测中的应用进展与展望[J]. 自动化学报, 2017,43(8): 1289-1305. |
ZHANG H , WANG K F , WANG F Y . Advances and perspectives on applications of deep learning in visual object detection[J]. Acta Automatica Sinica, 2017,43(8): 1289-1305. | |
[5] | 田永林, 王雨桐, 王建功 ,等. 视觉 Transformer 研究的关键问题:现状及展望[J]. 自动化学报, 2022,48(4): 957-979. |
TIAN Y L , WANG Y T , WANG J G ,et al. Key problems and progress of vision transformers:the state of the art and prospects[J]. Acta Automatica Sinica, 2022,48(4): 957-979. | |
[6] | 卢经纬, 郭超, 戴星原 ,等. 问答ChatGPT之后:超大预训练模型的机遇和挑战[J]. 自动化学报, 2023,49(4): 705-717. |
LU J W , GUO C , DAI X Y ,et al. The ChatGPT after:opportunities and challenges of very large scale pre-trained models[J]. Acta Automatica Sinica, 2023,49(4): 705-717. | |
[7] | 王飞跃, 缪青海, 张军平 ,等. 探讨AI for Science的影响与意义:现状与展望[J]. 智能科学与技术学报, 2023,5(1): 1-6. |
WANG F Y , MIAO Q H , ZHANG J P ,et al. The DAOs to AI for Science by DeSci:the state of the art and perspective[J]. Chinese Journal of Intelligent Science and Technology, 2023,5(1): 1-6. | |
[109] | MERCAT J , GILLES T , EL ZOGHBY N ,et al. Multi-head attention for multi-modal joint vehicle motion forecasting[C]// Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2020: 9638-9644. |
[110] | ZHANG K P , ZHAO L , DONG C X ,et al. AI-TP:attention-based interaction-aware trajectory prediction for autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2023,8(1): 73-83. |
[111] | TANG C , ZHAN W , TOMIZUKA M . Exploring social posterior collapse in variational autoencoder for interaction modeling[J]. Advances in Neural Information Processing Systems, 2021,34: 8481-8494. |
[112] | DEVLIN J , CHANG M W , LEE K ,et al. Bert:pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint, 2018,arXiv:1810.04805. |
[113] | LEE N , CHOI W , VERNAZA P ,et al. DESIRE:distant future prediction in dynamic scenes with interacting agents[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2017: 2165-2174. |
[114] | ZHAO H , GAO J , LAN T ,et al. Tnt:target-driven trajectory prediction[C]// Proceedings of Conference on Robot Learning. New York:PMLR, 2021: 895-904. |
[115] | LIU M , CHENG H , CHEN L ,et al. LAformer:trajectory prediction for autonomous driving with lane-aware scene constraints[J]. arXiv preprint, 2023,arXiv:2302.13933. |
[116] | YUAN Y , WENG X S , OU Y L ,et al. AgentFormer:agent-aware transformers for socio-temporal multi-agent forecasting[C]// Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2021: 9793-9803. |
[117] | PINI S , PERONE C S , AHUJA A ,et al. Safe Real-World Autonomous Driving by Learning to Predict and Plan with a Mixture of Experts[J]. arXiv preprint, 2022,arXiv:2211.02131. |
[118] | CHEN W , WANG F , SUN H . S2tnet:spatio-temporal transformer networks for trajectory prediction in autonomous driving[C]// Proceedings of Asian Conference on Machine Learning. New York:PMLR, 2021: 454-469. |
[119] | BHAT M , FRANCIS J , OH J . Trajformer:trajectory prediction with local self-attentive contexts for autonomous driving[J]. arXiv preprint, 2020,arXiv.2011.14910. |
[8] | 李娟娟, 秦蕊, 丁文文 ,等. 基于Web3的去中心化自治组织与运营新框架[J]. 自动化学报, 2023,49(5): 985-998. |
LI J J , QIN R , DING W W ,et al. A new framework for Web3-powered decentralized autonomous organizations and operations[J]. Acta Automatica Sinica, 2023,49(5): 985-998. | |
[9] | LECUN Y , BOSER B , DENKER J S ,et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989,1(4): 541-551. |
[10] | YE P J , WANG X , ZHENG W B ,et al. Parallel cognition:hybrid intelligence for human-machine interaction and management[J]. Frontiers of Information Technology & Electronic Engineering, 2022,23(12): 1765-1779. |
[11] | WANG X , YANG J , HAN J P ,et al. Metaverses and DeMetaverses:from digital twins in CPS to parallel intelligence in CPSS[J]. IEEE Intelligent Systems, 2022,37(4): 97-102. |
[12] | XIE G , SHANGGUAN A Q , FEI R ,et al. Motion trajectory prediction based on a CNN-LSTM sequential model[J]. Science China Information Sciences, 2020,63(11): 1-21. |
[13] | GIRSHICK R . Fast R-CNN[C]// Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2015: 1440-1448. |
[14] | HE K M , GKIOXARI G , DOLLáR P , et al . Mask R-CNN[C]// Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2017: 2980-2988. |
[15] | GRAVES A . Generating sequences with recurrent neural networks[J]. arXiv preprint. 2013,2013,arXiv:1308.0850. |
[16] | BAHDANAU D , CHO K , BENGIO Y . Neural machine translation by jointly learning to align and translate[J]. arXiv preprint, 2014,arXiv:1409.0473. |
[17] | HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997,9(8): 1735-1780. |
[120] | ZHAO J , LI X , XUE Q ,et al. Spatial-channel transformer network for trajectory prediction on the traffic scenes[J]. arXiv preprint, 2021,arXiv:2101.11472. |
[121] | HU J , SHEN L , SUN G . Squeeze-and-excitation networks[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 7132-7141. |
[122] | HUANG Z Y , MO X Y , LV C . Multi-modal motion prediction with transformer-based neural network for autonomous driving[C]// Proceedings of 2022 International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2022: 2605-2611. |
[123] | ZHANG K P , FENG X L , WU L ,et al. Trajectory prediction for autonomous driving using spatial-temporal graph attention transformer[J]. IEEE Transactions on Intelligent Transportation Systems, 2022,23(11): 22343-22353. |
[124] | LIU Z , LIN Y T , CAO Y ,et al. Swin transformer:hierarchical vision transformer using shifted windows[C]// Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2021: 9992-10002. |
[125] | NAYAKANTI N , AL-RFOU R , ZHOU A ,et al. Wayformer:motion forecasting via simple & efficient attention networks[J]. arXiv preprint, 2022,arXiv:2207.05844. |
[126] | CHAMI I , ABU-EL-HAIJA S , PEROZZI B ,et al. Machine learning on graphs:A model and comprehensive taxonomy[J]. Journal of Machine Learning Research, 2022,23(89): 1-64. |
[127] | LIANG M , YANG B , HU R ,et al. Learning Lane Graph Representations for Motion Forecasting[C]// Proceedings of European Conference on Computer Vision. Cham:Springer, 2020: 541-556. |
[128] | BEHBAHANI F , SHIARLIS K , CHEN X ,et al. Learning from demonstration in the wild[C]// Proceedings of 2019 International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2019: 775-781. |
[129] | CASAS S , GULINO C , LIAO R J ,et al. SpAGNN:spatially-aware graph neural networks for relational behavior forecasting from sensor data[C]// Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2020: 9491-9497. |
[130] | RHINEHART N , MCALLISTER R , KITANI K ,et al. PRECOG:PREdiction conditioned on goals in visual multi-agent settings[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2020: 2821-2830. |
[18] | FU R , ZHANG Z , LI L . Using LSTM and GRU neural network methods for traffic flow prediction[C]// Proceedings of 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). Piscataway:IEEE Press, 2016: 324-328. |
[19] | DEY R , SALEM F M . Gate-variants of Gated Recurrent Unit (GRU) neural networks[C]// Proceedings of 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). Piscataway:IEEE Press, 2017: 1597-1600. |
[20] | CHUNG J , GULCEHRE C , CHO K H ,et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint, 2014,arXiv:1412.3555. |
[21] | MESSAOUD K , YAHIAOUI I , VERROUST-BLONDET A ,et al. Nonlocal social pooling for vehicle trajectory prediction[C]// Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV). Piscataway:IEEE Press, 2019: 975-980. |
[22] | MESSAOUD K , YAHIAOUI I , VERROUST-BLONDET A , ,et al. Attention based vehicle trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2021,6(1): 175-185. |
[23] | MESSAOUD K , DEO N , TRIVEDI M M ,et al. Trajectory prediction for autonomous driving based on multi-head attention with joint agentmap representation[C]// Proceedings of 2021 IEEE Intelligent Vehicles Symposium (IV). Piscataway:IEEE Press, 2021: 165-170. |
[24] | VASWANI A , SHAZEER N , PARMAR N ,et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM, 2017: 6000-6010. |
[25] | LIU Y C , ZHANG J H , FANG L J ,et al. Multimodal motion prediction with stacked transformers[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2021: 7573-7582. |
[26] | ZHANG K , LI L . Explainable multimodal trajectory prediction using attention models[J]. Transportation Research Part C:Emerging Technologies, 2022,143:103829. |
[27] | WU Z H , PAN S R , CHEN F W ,et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,32(1): 4-24. |
[28] | SCARSELLI F , GORI M , TSOI A C ,et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009,20(1): 61-80. |
[131] | CASAS S , GULINO C , SUO S ,et al. Implicit Latent Variable Model for Scene-Consistent Motion Forecasting[C]// Proceeding of European Conference on Computer Vision. Cham:Springer, 2020: 624-641. |
[132] | LI X , YING X W , CHUAH M C . GRIP:graph-based interactionaware trajectory prediction[C]// Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC). Piscataway:IEEE Press, 2019: 3960-3966. |
[133] | LI X , YING X , CHUAH M C . Grip++:enhanced graph-based interaction-aware trajectory prediction for autonomous driving[J]. arXiv preprint, 2019,arXiv:1907.07792. |
[134] | CHANDRA R , GUAN T R , PANUGANTI S ,et al. Forecasting trajectory and behavior of road-agents using spectral clustering in graphLSTMs[J]. IEEE Robotics and Automation Letters, 2020,5(3): 4882-4890. |
[135] | GAO J Y , SUN C , ZHAO H ,et al. VectorNet:encoding HD maps and agent dynamics from vectorized representation[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020: 11522-11530. |
[136] | GU J R , SUN C , ZHAO H . DenseTNT:end-to-end trajectory prediction from dense goal sets[C]// Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2021: 15283-15292. |
[137] | CHAI Y , SAPP B , BANSAL M ,et al. Multipath:multiple probabilistic anchor trajectory hypotheses for behavior prediction[J]. arXiv preprint, 2019,arXiv:1910.05449. |
[138] | HUANG Y F , BI H K , LI Z X ,et al. STGAT:modeling spatialtemporal interactions for human trajectory prediction[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2019: 6271-6280. |
[139] | GUPTA A , JOHNSON J , LI F F ,et al. Social GAN:socially acceptable trajectories with generative adversarial networks[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 2255-2264. |
[140] | LI J C , MA H B , TOMIZUKA M . Conditional generative neural system for probabilistic trajectory prediction[C]// Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2019: 6150-6156. |
[141] | YANG B , HE C , WANG P ,et al. TPPO:a novel trajectory predictor with pseudo oracle[J]. arXiv preprint, 2020,arXiv:2002.01852. |
[29] | DIEHL F , BRUNNER T , LE M T ,et al. Graph neural networks for modelling traffic participant interaction[C]// Proceedings of 2019 IEEE Intelligent Vehicles Symposium. Piscataway:IEEE Press, 2019: 695-701. |
[30] | KIPF T N , WELLING M . Semi-supervised classification with graph convolutional networks[J]. arXiv preprint, 2016,arXiv:1609.02907. |
[31] | ZHANG S , TONG H H , XU J J ,et al. Graph convolutional networks:a comprehensive review[J]. Computational Social Networks, 2019,6(1): 1-23. |
[32] | VELI?KOVI? P , CUCURULL G , CASANOVA A ,et al. Graph attention networks[J]. arXiv preprint, 2017,arXiv:1710.10903. |
[33] | JI H Y , WANG X , SHI C ,et al. Heterogeneous graph propagation network[J]. IEEE Transactions on Knowledge and Data Engineering, 2023,35(1): 521-532. |
[34] | WANG X , HE X N , CAO Y X ,et al. KGAT:knowledge graph attention network for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM, 2019: 950-958. |
[35] | KIPF T N , WELLING M . Variational graph auto-encoders[J]. arXiv preprint, 2016,arXiv:1611.07308. |
[36] | PAN S , HU R , LONG G ,et al. Adversarially regularized graph autoencoder for graph embedding[J]. arXiv preprint, 2018,arXiv:1802.04407. |
[37] | ZHOU D W , ZHENG L C , HAN J W ,et al. A data-driven graph generative model for temporal interaction networks[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM, 2020: 401-411. |
[38] | BONGINI P , BIANCHINI M , SCARSELLI F . Molecular generative graph neural networks for drug discovery[J]. Neurocomputing, 2021,450: 242-252. |
[39] | YAN S , XIONG Y , LIN D . Spatial temporal graph convolutional networks for skeleton-based action recognition[J]. arXiv preprint, 2018,arXiv:1801.07455. |
[142] | SADEGHIAN A , KOSARAJU V , SADEGHIAN A ,et al. SoPhie:an attentive GAN for predicting paths compliant to social and physical constraints[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019: 1349-1358. |
[143] | LIU S H , LIU H B , BI H K ,et al. CoL-GAN:plausible and collisionless trajectory prediction by attention-based GAN[J]. IEEE Access, 2020,8: 101662-101671. |
[144] | CHOI S , KWEON N , YANG C ,et al. DSA-GAN:driving style attention generative adversarial network for vehicle trajectory prediction[C]// Proceedings of 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). Piscataway:IEEE Press, 2021: 1515-1520. |
[145] | KINGMA D P , WELLING M . Auto-encoding variational bayes[J]. arXiv preprint, 2013,arXiv:1312.6114. |
[146] | BALDI P . Autoencoders,unsupervised learning and deep architectures[C]// Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning workshop. New York:ACM, 2011: 37-50. |
[147] | GóMEZ-HUéLAMO C , CONDE M V , ORTIZ M ,et al. Exploring attention GAN for vehicle motion prediction[C]// Proceedings of 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). Piscataway:IEEE Press, 2022: 4011-4016. |
[148] | WANG W , LIU C , ZHAO D . How much data are enough? A statistical approach with case study on longitudinal driving behavior[J]. IEEE Transactions on Intelligent Vehicles, 2017,2(2): 85-98. |
[149] | 王晓, 杨林瑶, 胡斌 ,等. 平行推理:一种基于ACP方法的虚实互动的知识协同框架[J]. 智能科学与技术学报, 2023,5(1): 69-82. |
WANG X , YANG L Y , HU B ,et al. Parallel reasoning:a virtual-real interactive knowledge collaboration framework based on ACP approach[J]. Chinese Journal of Intelligent Science and Technology, 2023,5(1): 69-82. | |
[150] | 田永林, 陈苑文, 杨静 ,等. 元宇宙与平行系统:发展现状、对比及展望[J]. 智能科学与技术学报, 2023,5(1): 121-132. |
TIAN Y L , CHEN Y W , YANG J ,et al. Metaverses and parallel systems:the state of the art,comparisons and prospects[J]. Chinese Journal of Intelligent Science and Technology, 2023,5(1): 121-132. | |
[40] | GUO S N , LIN Y F , FENG N ,et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019,33(1): 922-929. |
[41] | GOODFELLOW I , POUGET-ABADIE J , MIRZA M ,et al. Generative adversarial networks[J]. Communications of the ACM, 2020,63(11): 139-144. |
[42] | CRESWELL A , WHITE T , DUMOULIN V ,et al. Generative adversarial networks:an overview[J]. IEEE Signal Processing Magazine, 2018,35(1): 53-65. |
[43] | HO J , ERMON S . Generative adversarial imitation learning[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. New York:ACM, 2016: 4572-4580. |
[44] | SONG J M , REN H Y , SADIGH D ,et al. Multi-agent generative adversarial imitation learning[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York:ACM, 2018: 7472-7483. |
[45] | KOSARAJU V , SADEGHIAN A , MARTíN-MARTíN R , ,et al. SocialBiGAT:multimodal trajectory forecasting using bicycle-GAN and graph attention networks[J]. arXiv preprint, 2019,arXiv:1907.03395. |
[46] | ZHAO T , ZHAO R , ESKENAZI M . Learning discourse-level diversity for neural dialog models using conditional variational autoencoders[J]. arXiv preprint, 2017,arXiv:1703.10960. |
[47] | BAO J M , CHEN D , WEN F ,et al. CVAE-GAN:fine-grained image generation through asymmetric training[C]// Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2017: 2764-2773. |
[48] | IVANOVIC B , LEUNG K , SCHMERLING E ,et al. Multimodal deep generative models for trajectory prediction:a conditional variational autoencoder approach[J]. IEEE Robotics and Automation Letters, 2021,6(2): 295-302. |
[49] | HONG J , SAPP B , PHILBIN J . Rules of the road:predicting driving behavior with a convolutional model of semantic interactions[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019: 8446-8454. |
[50] | LEFèVRE S , VASQUEZ D , LAUGIER C . A survey on motion prediction and risk assessment for intelligent vehicles[J]. ROBOMECH Journal, 2014,1(1): 1-14. |
[51] | GONZáLEZ D , PéREZ J , MILANéS V ,et al. A review of motion planning techniques for automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2016,17(4): 1135-1145. |
[52] | LIU J B , MAO X Y , FANG Y Q ,et al. A survey on deep-learning approaches for vehicle trajectory prediction in autonomous driving[C]// Proceedings of 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway:IEEE Press, 2021: 978-985. |
[53] | MOZAFFARI S , AL-JARRAH O Y , DIANATI M ,et al. Deep learningbased vehicle behavior prediction for autonomous driving applications:a review[J]. IEEE Transactions on Intelligent Transportation Systems, 2022,23(1): 33-47. |
[54] | LEON F , GAVRILESCU M . A review of tracking and trajectory prediction methods for autonomous driving[J]. Mathematics, 2021,9(6): 660. |
[55] | GOMES I , WOLF D . A review on intention-aware and interactionaware trajectory prediction for autonomous vehicles[J]. 2022 |
[56] | SHIRAZI M S , MORRIS B T . Looking at intersections:a survey of intersection monitoring,behavior and safety analysis of recent studies[J]. IEEE Transactions on Intelligent Transportation Systems, 2017,18(1): 4-24. |
[57] | HUANG Y J , DU J T , YANG Z R ,et al. A survey on trajectory-prediction methods for autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2022,7(3): 652-674. |
[58] | KAELBLING L P , LITTMAN M L , MOORE A W . Reinforcement learning:a survey[J]. Journal of Artificial Intelligence Research, 1996,4: 237-285. |
[59] | NAYAK A , ESKANDARIAN A , DOERZAPH Z . Uncertainty estimation of pedestrian future trajectory using Bayesian approximation[J]. IEEE Open Journal of Intelligent Transportation Systems, 2022,3: 617-630. |
[60] | WANG X , TANG K , DAI X Y ,et al. Safety-balanced driving-style aware trajectory planning in intersection scenarios with uncertain environment[J]. IEEE Transactions on Intelligent Vehicles, 2023,8(4): 2888-2898. |
[61] | DEO N , TRIVEDI M M . Multi-modal trajectory prediction of surrounding vehicles with maneuver based LSTMs[C]// Proceedings of 2018 IEEE Intelligent Vehicles Symposium (IV). Piscataway:IEEE Press, 2018: 1179-1184. |
[62] | SHOUNO O . Deep unsupervised learning of a topological map of vehicle maneuvers for characterizing driving styles[C]// Proceedings of 2018 21st International Conference on Intelligent Transportation Systems (ITSC). Piscataway:IEEE Press, 2018: 2917-2922. |
[63] | LIPTON Z C . The mythos of model interpretability:in machine learning,the concept of interpretability is both important and slippery[J]. Queue, 2018,16(3): 31-57. |
[64] | CHAKRABORTY S , TOMSETT R , RAGHAVENDRA R ,et al. Interpretability of deep learning models:A survey of results[C]// 2017 IEEE SmartWorld,Ubiquitous Intelligence & Computing,Advanced & Trusted Computed,Scalable Computing & Communications,Cloud & Big Data Computing,Internet of People and Smart City Innovation. Piscataway:IEEE Press, 2017: 1-6. |
[65] | GUNNING D , STEFIK M , CHOI J ,et al. XAI-explainable artificial intelligence[J]. Science Robotics, 2019,4(37): eaay7120. |
[66] | DU M N , LIU N H , HU X . Techniques for interpretable machine learning[J]. Communications of the ACM, 2019,63(1): 68-77. |
[67] | HUME D . An inquiry concerning human understanding[M]. New York: Oxford University Press, 2003. |
[68] | YUAN Y , KITANI K . Diverse trajectory forecasting with determinantal point processes[J]. arXiv preprint, 2019,arXiv:1907.04967. |
[69] | KIM J , CANNY J . Interpretable learning for self-driving cars by visualizing causal attention[C]// Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2017: 2961-2969. |
[70] | CAESAR H , BANKITI V , LANG A H ,et al. nuScenes:a multimodal dataset for autonomous driving[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020: 11618-11628. |
[71] | HOUSTON J , ZUIDHOF G , BERGAMINI L ,et al. One thousand and one hours:Self-driving motion prediction dataset[C]// Proceedings of Conference on Robot Learning. New York:PMLR, 2021: 409-418. |
[72] | SUN P , KRETZSCHMAR H , DOTIWALLA X ,et al. Scalability in perception for autonomous driving:waymo open dataset[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020: 2443-2451. |
[73] | CHANG M F , LAMBERT J , SANGKLOY P ,et al. Argoverse:3D tracking and forecasting with rich maps[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019: 8740-8749. |
[74] | WILSON B , QI W , AGARWAL T ,et al. Argoverse 2:next generation datasets for self-driving perception and forecasting[J]. arXiv preprint, 2023,arXiv:2301.00493. |
[75] | ZHAN W , SUN L , WANG D ,et al. Interaction dataset:an international,adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps[J]. arXiv preprint, 2019,arXiv:1910.03088. |
[76] | KRAJEWSKI R , BOCK J , KLOEKER L ,et al. The highD dataset:a drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems[C]// Proceedings of 2018 21st International Conference on Intelligent Transportation Systems (ITSC). Piscataway:IEEE Press, 2018: 2118-2125. |
[77] | HUANG X Y , CHENG X J , GENG Q C ,et al. The ApolloScape dataset for autonomous driving[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway:IEEE Press, 2018: 954-960. |
[78] | GEIGER A , LENZ P , STILLER C ,et al. Vision meets robotics:the KITTI dataset[J]. International Journal of Robotics Research, 2013,32(11): 1231-1237. |
[79] | FANG L J , JIANG Q H , SHI J P ,et al. TPNet:trajectory proposal net work for motion prediction[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020: 6796-6805. |
[80] | NIKHIL N , MORRIS B T . Convolutional Neural Network for Trajectory Prediction[C]// European Conference on Computer Vision. Cham:Springer, 2019: 186-196. |
[81] | CHOU F C , LIN T H , CUI H G ,et al. Predicting motion of vulnerable road users using high-definition maps and efficient ConvNets[C]// Proceedings of 2020 IEEE Intelligent Vehicles Symposium (IV). Piscataway:IEEE Press, 2020: 1655-1662. |
[82] | CUI H G , RADOSAVLJEVIC V , CHOU F C ,et al. Multimodal trajectory predictions for autonomous driving using deep convolutional networks[C]// Proceedings of 2019 International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2019: 2090-2096. |
[83] | PHAN-MINHT , GRIGOREE C , BOULTONF A ,et al. CoverNet:multimodal behavior prediction using trajectory sets[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020: 14062-14071. |
[151] | MIAO Q H , LV Y S , HUANG M ,et al. Parallel learning:overview and perspective for computational learning across Syn2Real and Sim2Real[J]. IEEE/CAA Journal of Automatica Sinica, 2023,10(3): 603-631. |
[84] | CUI H G , NGUYEN T , CHOU F C ,et al. Deep kinematic models for kinematically feasible vehicle trajectory predictions[C]// Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2020: 10563-10569. |
[85] | DEO N , TRIVEDI M M . Convolutional social pooling for vehicle trajectory prediction[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway:IEEE Press, 2018: 1468-1476. |
[86] | MARZINOTTO A , COLLEDANCHISE M , SMITH C ,et al. Towards a unified behavior trees framework for robot control[C]// Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Press, 2014: 5420-5427. |
[1] | Quancheng DU, Xiao WANG, Lingxi LI, Huansheng NING. Key problems and progress of pedestrian trajectory prediction methods: the state of the art and prospects [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(2): 143-162. |
[2] | Zhe HUANG, Yongcai WANG, Deying LI. A survey of 3D object detection algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 7-31. |
[3] | Xiaofeng CONG, Jie GUI, Jun ZHANG. Underwater image enhancement network based on visual Transformer with multiple loss functions fusion [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(4): 522-532. |
[4] | Yuanqi QIN, Qingyuan JI, Jun GE, Xingyuan DAI, Yuanyuan CHEN, Xiao WANG. Short-term traffic state reasoning and precise prediction in urban networks [J]. Chinese Journal of Intelligent Science and Technology, 2022, 4(3): 380-395. |
[5] | Linhui LI, Bin ZHOU, Weiwei REN, Jing LIAN. Review of pedestrian trajectory prediction methods [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 399-411. |
[6] | Wen LIU, Kunlin HU, Yan LI, Zhao LIU. A review of prediction methods for moving target trajectories [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(2): 149-160. |
[7] | Bao-Liang LU, Yaqian ZHANG, Wei-Long ZHENG. A survey of affective brain-computer interface [J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 36-48. |
[8] | Shan LI,Yongchao LI,Ying ZOU,Lin YANG,Yin WANG,Zhijun YAO,Ubin H. Brain abnormalities in depression based on multimodal imaging [J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 116-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|