[1] |
CAO Y , LI S , LIU Y ,et al. A comprehensive survey of AI-generated content (AIGC):a history of generative AI from GAN to ChatGPT[EB]. arXiv preprint, 2023,arXiv:2303.04226.
|
[2] |
ROMBACH R , BLATTMANN A , LORENZ D ,et al. High-resolution image synthesis with latent diffusion models[C]// Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2022: 10674-10685.
|
[3] |
CHANG M , DRUGA S , FIANNACA A J ,et al. The prompt artists[C]// Proceedings of the 15th Conference on Creativity and Cognition. New York:ACM, 2023: 75-87.
|
[4] |
武强, 季雪庭, 吕琳媛 . 元宇宙中的人工智能技术与应用[J]. 智能科学与技术学报, 2022,4(3): 324-334.
|
|
WU Q , JI X T , LYU L Y . Artificial intelligence technology and applications in the metaverse[J]. Journal of Intelligent Science and Technology, 2022,4(3): 324-334.
|
[5] |
RUNCO M A , JAEGER G J . The standard definition of creativity[J]. Creativity Research Journal, 2012,24(1): 92-96.
|
[6] |
CROWSON K , BIDERMAN S , KORNIS D ,et al. VQGAN-CLIP:open domain image generation and editing with natural language guidance[EB]. arXiv preprint, 2022,arXiv:2204.08583.
|
[7] |
CETINIC E , SHE J . Understanding and creating art with AI:review and outlook[J]. ACM Transactions on Multimedia Computing,Communications,and Applications (TOMM), 2022,18(2): 1-22.
|
[8] |
HONG J W , CURRAN N M . Artificial intelligence,artists,and art:attitudes toward artwork produced by humans vs.artificial intelligence[J]. ACM Transactions on Multimedia Computing,Communications,and Applications, 2019,15(2): 1-16.
|
[9] |
DENG Y . Application of artificial intelligence in art design[C]// Proceedings of 2021 International Conference on Computer Technology and Media Convergence Design (CTMCD). Piscataway:IEEE Press, 2021: 200-203.
|
[10] |
SUN Y K , LYU Y R , LIN P H ,et al. Comparison of cognitive differences of artworks between artist and artistic style transfer[J]. Applied Sciences, 2022,12(11): 5525.
|
[11] |
LI L . The impact of artificial intelligence painting on contemporary art from disco diffusion’s painting creation experiment[C]// Proceedings of 2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML). Piscataway:IEEE Press, 2022: 52-56.
|
[12] |
TAE H S , KIM S Y . Exploratory review on the convergence of artificial intelligence and art[J]. Official Journal of the Korean Society of Dance Science, 2019,36(2): 27-42.
|
[13] |
MALINA R F , MCCORDUCK P , COHEN H . Aaron’s code:meta-art,artificial intelligence and the work of Harold Cohen[J]. Leonardo, 1991,24(5): 628-629.
|
[14] |
LE Q V . Building high-level features using large scale unsupervised learning[C]// Proceedings of 2013 IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway:IEEE Press, 2013: 8595-8598.
|
[15] |
MIIKKULAINEN R , LIANG J , MEYERSON E ,et al. Evolving deep neural networks[M]// Artificial Intelligence in the Age of Neural Networks and Brain Computing. Amsterdam: Elsevier, 2019: 293-312.
|
[16] |
WANG K F , GOU C , DUAN Y J ,et al. Generative adversarial networks:introduction and outlook[J]. IEEE/CAA Journal of Automatica Sinica, 2017,4(4): 588-598.
|
[17] |
LI X R , LI H , WANG C Y ,et al. Visual-attention GAN for interior sketch colourisation[J]. IET Image Processing, 2021,15(4): 997-1007.
|
[18] |
ZHU J Y , PARK T , ISOLA P ,et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2017: 2242-2251.
|
[19] |
KARRAS T , LAINE S , AILA T M . A style-based generator architecture for generative adversarial networks[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019: 4401-4410.
|
[20] |
BROCK A , DONAHUE J , SIMONYAN K ,et al. Large scale GAN training for high fidelity natural image synthesis[EB]. arXiv preprint, 2018,arXiv:1809.11096.
|
[21] |
RADFORD A , KIM J W , HALLACY C ,et al. Learning transferable visual models from natural language supervision[EB]. arXiv preprint, 2021,arXiv:2103.00020.
|
[22] |
NICHOL A , DHARIWAL P , RAMESH A ,et al. GLIDE:towards photorealistic image generation and editing with text-guided diffusion models[EB]. arXiv preprint, 2021,arXiv:2112.10741.
|
[23] |
DHARIWAL P , NICHOL A . Diffusion models beat GANs on image synthesis[C]// Proceedings of Advances in Neural Information Processing Systems.[S.l.:s.n.], 2021: 8780-8794.
|
[24] |
PAVLICHENKO N , USTALOV D . Best prompts for text-to-image models and how to find them[C]// Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2023: 2067-2071.
|
[25] |
CHOI S Y . A study on AI art in the post-digital age[J]. The Journal of Aesthetics & Science of Art, 2022,67: 188-214.
|
[26] |
ZHANG L , RAO A , AGRAWALA M ,et al. Adding conditional control to textto-image diffusion models[EB]. arXiv preprint, 2023,arXiv:2302.05543.
|
[27] |
OPPENLAENDER J , LINDER R , SILVENNOINEN J ,et al. Prompting AI art:an investigation into the creative skill of prompt engineering[EB]. arXiv preprint, 2023,arXiv:2303.13534.
|