Chinese Journal of Intelligent Science and Technology ›› 2024, Vol. 6 ›› Issue (1): 17-32.doi: 10.11959/j.issn.2096-6652.202404
• Embodied Intelligence and AI Agents After: Infrastructure Models and Foundation Intelligence • Previous Articles Next Articles
Tianyu SHEN1, Zhiwei LI1(), Lili FAN2, Tingzhen ZHANG1, Dandan TANG3, Meihua ZHOU4, Huaping LIU5, Kunfeng WANG1()
Received:
2024-02-15
Revised:
2024-03-03
Online:
2024-03-15
Published:
2024-03-15
Contact:
Zhiwei LI, Kunfeng WANG
E-mail:lizw@buct.edu.cn;wangkf@buct.edu.cn
Supported by:
CLC Number:
Tianyu SHEN, Zhiwei LI, Lili FAN, et al. Embodied intelligent driving: concept, methods, the state of the art and beyond[J]. Chinese Journal of Intelligent Science and Technology, 2024, 6(1): 17-32.
1 | WANG Y T, WANG X, WANG X X, et al. The ChatGPT after: building knowledge factories for knowledge workers with knowledge automation[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(11): 2041-2044. |
2 | TIAN Y L, LI X, ZHANG H, et al. VistaGPT: generative parallel transformers for vehicles with intelligent systems for transport automation[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(9): 4198-4207. |
3 | WANG F Y, MIAO Q H, LI X, et al. What does ChatGPT say: the DAO from algorithmic intelligence to linguistic intelligence[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(3): 575-579. |
4 | MEMARIAN B, DOLECK T. Embodied AI in education: a review on the body, environment, and mind[J]. Education and Information Technologies, 2024, 29(1): 895-916. |
5 | 刘华平, 郭迪, 孙富春, 等. 基于形态的具身智能研究: 历史回顾与前沿进展[J]. 自动化学报, 2023, 49(6): 1131-1154. |
LIU H P, GUO D, SUN F C, et al. Morphology-based embodied intelligence: historical retrospect and research progress[J]. Acta Automatica Sinica, 2023, 49(6): 1131-1154. | |
6 | GUPTA A, SAVARESE S, GANGULI S, et al. Embodied intelligence via learning and evolution[J]. Nature Communications, 2021, 12(1): 5721. |
7 | HOWARD D, EIBEN A E, KENNEDY D F, et al. Evolving embodied intelligence from materials to machines[J]. Nature Machine Intelligence, 2019, 1(1): 12-19. |
8 | JIN D D, ZHANG L. Embodied intelligence weaves a better future[J]. Nature Machine Intelligence, 2020, 2: 663-664. |
9 | AI Y F, LIU Y H, GAO Y, et al. PMWorld: a parallel testing platform for autonomous driving in mines[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 1402-1411. |
10 | YANG J J, HUANG Q K, GE S R, et al. On intelligent mining with parallel intelligence[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(10): 4296-4300. |
11 | CHEN L, XIE J K, ZHANG X T, et al. Mining 5.0: concept and framework for intelligent mining systems in CPSS[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(6): 3533-3536. |
12 | GU Y X, WANG Q L, QIN X L. Real-time streaming perception system for autonomous driving[C]//Proceedings of the 2021 China Automation Congress (CAC). Piscataway: IEEE Press, 2021: 5239-5244. |
13 | DENG Z Y, SHI Y J, SHEN W M. V2X-lead: LiDAR-based end-to-end autonomous driving with vehicle-to-everything communication integration[C]//Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2023: 7471-7478. |
14 | THRUN S. Toward robotic cars[J]. Communications of the ACM, 2010, 53(4): 99-106. |
15 | SCHWARTZ R, Safe integration of autonomous vehicles in urban tra?ic[J]. Nature Machine Intelligence, 2020. |
16 | LIU Y F, LIU Y Z, SHEN C. Combining minds and machines: investigating the fusion of cognitive architectures and generative models for general embodied intelligence[J]. Proceedings of the AAAI Symposium Series, 2024, 2(1): 307-314. |
17 | TURING A M. Computing machinery and intelligence[M]//Parsing the Turing Test. Dordrecht: Springer Netherlands, 2007: 23-65. |
18 | On-Road Automated Driving (ORAD) Committee. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles[M]. [S.l.]: SAE International, 2021. |
19 | 沈宇, 王晓, 韩双双, 等. 代理技术Agent在智能车辆与驾驶中的应用现状[J]. 指挥与控制学报, 2019, 5(2): 87-98. |
SHEN Y, WANG X, HAN S S, et al. Agent-based technology in intelligent vehicles and driving: state-of-the-art and prospect[J]. Journal of Command and Control, 2019, 5(2): 87-98. | |
20 | WANG J G, WANG X, SHEN T Y, et al. Parallel vision for long-tail regularization: initial results from IVFC autonomous driving testing[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(2): 286-299. |
21 | BAI X Y, HU Z Y, ZHU X G, et al. TransFusion: robust LiDAR-camera fusion for 3D object detection with transformers[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 1080-1089. |
22 | RONG Y, WEI X Y, LIN T W, et al. DynStatF: an efficient feature fusion strategy for LiDAR 3D object detection[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2023: 3238-3247. |
23 | TIAN Y L, ZHANG X J, WANG X, et al. ACF-net: asymmetric cascade fusion for 3D detection with LiDAR point clouds and images[J]. IEEE Transactions on Intelligent Vehicles, 2023: 1-12. |
24 | SINDAGI V A, ZHOU Y, TUZEL O. MVX-net: multimodal VoxelNet for 3D object detection[C]//Proceedings of the 2019 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2019: 7276-7282. |
25 | 孙水发, 汤永恒, 王奔, 等. 动态场景的三维重建研究综述[J]. 计算机科学与探索, 2024, 18(4): 831-860. |
SUN S F, TANG Y H, WANG B, et al. Review of research on 3D reconstruction of dynamic scenes[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 831-860. | |
26 | GRETTON A, SMOLA A, HUANG J Y, et al. Covariate shift and local learning by distribution matching[M]. Cambridge: MIT Press, 2009: 131-160. |
27 | GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[EB]. arXiv preprint, 2014, arXiv: 1409.7495. |
28 | BERTHELOT D, ROELOFS R, SOHN K, et al. AdaMatch: a unified approach to semi-supervised learning and domain adaptation[EB]. arXiv preprint, 2021, arXiv: 2106.04732. |
29 | MENG D J, XIAO W, ZHANG L J, et al. Vehicle trajectory prediction based predictive collision risk assessment for autonomous driving in highway scenarios[J]. arXiv preprint, 2023, arXiv: 2304.05610. |
30 | WANG X W, ALONSO-MORA J, WANG M. Probabilistic risk metric for highway driving leveraging multi-modal trajectory predictions[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19399-19412. |
31 | FANG L J, JIANG Q H, SHI J P, et al. TPNet: trajectory proposal network for motion prediction[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 6796-6805. |
32 | 景荣荣, 吴兰, 张坤鹏. 基于Transformer的自动驾驶交互感知轨迹预测[J]. 科学技术与工程, 2023, 23(26): 11414-11423. |
JING R R, WU L, ZHANG K P. Transformer-based interaction-aware trajectory prediction for autonomous driving[J]. Science Technology and Engineering, 2023, 23(26): 11414-11423. | |
33 | 李升波, 占国建, 蒋宇轩, 等. 类脑学习型自动驾驶决控系统的关键技术[J]. 汽车工程, 2023, 45(9): 1499-1515. |
LI S B, ZHAN G J, JIANG Y X, et al. Key technologies of brain-inspired decision and control intelligence for autonomous driving systems[J]. Automotive Engineering, 2023, 45(9): 1499-1515. | |
34 | PENG X Y, CHANG C, WANG F Y, et al. Robust multitask learning with sample gradient similarity[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(1): 497-506. |
35 | 曹佳钰, 冷甦鹏, 张科. 面向自动驾驶应用的车联多智能体信息融合协同决策机制研究[J]. 物联网学报, 2020, 4(3): 69-77. |
CAO J Y, LENG S P, ZHANG K. Multi-agent driven collaborative decision mechanism of\r information fusion for autonomous driving vehicles[J]. Chinese Journal on Internet of Things, 2020, 4(3): 69-77. | |
36 | WANG L Y, ZHANG X X, SU H, et al. A comprehensive survey of continual learning: theory, method and application[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, accepted. |
37 | RANNEN A, ALJUNDI R, BLASCHKO M B, et al. Encoder based lifelong learning[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 1329-1337. |
38 | LIU X L, WU C S, MENTA M, et al. Generative feature replay for class-incremental learning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2020: 915-924. |
39 | JOSEPH K J, BALASUBRAMANIAN V N. Meta-consolidation for continual learning[EB]. arXiv preprint, 2020, arXiv: 2010.00352. |
40 | WANG R Q, BAO Y X, ZHANG B C, et al. Anti-retroactive interference for lifelong learning[M]//Lecture Notes in Computer Science. Cham: Springer Nature, 2022: 163-178. |
41 | SHI Y J, ZHOU K Q, LIANG J, et al. Mimicking the oracle: an initial phase decorrelation approach for class incremental learning[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 16701-16710. |
42 | ZHANG G W, WANG L Y, KANG G L, et al. SLCA: slow learner with classifier alignment for continual learning on a pre-trained model[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2023: 19091-19101. |
43 | KIM G, XIAO C N, KONISHI T, et al. A theoretical study on solving continual learning[EB]. arXiv preprint, 2022, arXiv: 2211.02633. |
44 | MCCLOSKEY M, COHEN N J. Catastrophic interference in connectionist networks: the sequential learning problem[M]//Psychology of Learning and Motivation. Amsterdam: Elsevier, 1989: 109-165. |
45 | MASANA M, LIU X L, TWARDOWSKI B, et al. Class-incremental learning: survey and performance evaluation on image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 5513-5533. |
46 | GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2012: 3354-3361. |
47 | CAESAR H, BANKITI V, LANG A H, et al. NuScenes: a multimodal dataset for autonomous driving[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 11618-11628. |
48 | SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: waymo open dataset[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 2443-2451. |
49 | CHANG M F, LAMBERT J, SANGKLOY P, et al. Argoverse: 3D tracking and forecasting with rich maps[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 8740-8749. |
50 | HOUSTON J, ZUIDHOF G, BERGAMINI L, et al. One thousand and one hours: self-driving motion prediction dataset[EB]. arXiv preprint, 2020, arXiv: 2006.14480. |
51 | FENG D P, QI Y H, ZHONG S P, et al. S3E: a large-scale multimodal dataset for collaborative SLAM[EB]. arXiv preprint, 2022, arXiv: 2210.13723. |
52 | ALIBEIGI M, LJUNGBERGH W, TONDERSKI A, et al. Zenseact open dataset: a large-scale and diverse multimodal dataset for autonomous driving[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2023: 20121-20131. |
53 | DOSOVITSKIY A, ROS G, CODEVILLA F, et al. CARLA: an open urban driving simulator[EB]. arXiv preprint, 2017, arXiv: 1711.03938. |
54 | HUANG X Y, CHENG X J, GENG Q C, et al. The ApolloScape dataset for autonomous driving[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE Press, 2018: 1067-10676. |
55 | GEYER J, KASSAHUN Y, MAHMUDI M, et al. A2D2: audi autonomous driving dataset[EB]. arXiv preprint, 2020: arXiv: 2004.06320. |
56 | CHEN M, LIU P F, ZHAO H C. LiDAR-camera fusion: dual transformer enhancement for 3D object detection[J]. Engineering Applications of Artificial Intelligence, 2023, 120: 105815. |
57 | AN P, LIANG J X, HONG X, et al. Leveraging self-paced semi-supervised learning with prior knowledge for 3D object detection on a LiDAR-camera system[J]. Remote Sensing, 2023, 15(3): 627. |
58 | ZHANG L, LI X, TANG K C, et al. FS-net: LiDAR-camera fusion with matched scale for 3D object detection in autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12154-12165. |
59 | LI Y W, YU A W, MENG T J, et al. DeepFusion: lidar-camera deep fusion for multi-modal 3D object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 17161-17170. |
60 | KOH J, KIM J, YOO J H, et al. Joint 3D object detection and tracking using spatio-temporal representation of camera image and LiDAR point clouds[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(1): 1210-1218. |
61 | HUANG K M, HAO Q. Joint multi-object detection and tracking with camera-LiDAR fusion for autonomous driving[C]//Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York: ACM, 2021: 6983-6989. |
62 | ZHANG K P, LIU Y H, MEI F, et al. Boost correlation features with 3D-MiIoU-based camera-LiDAR fusion for MODT in autonomous driving[J]. Remote Sensing, 2023, 15(4): 874. |
63 | WANG X Y, FU C Y, LI Z K, et al. DeepFusionMOT: a 3D multi-object tracking framework based on camera-LiDAR fusion with deep association[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 8260-8267. |
64 | ZHU Z M, NIE J H, WU H, et al. MSA-MOT: multi-stage association for 3D multimodality multi-object tracking[J]. Sensors, 2022, 22(22): 8650. |
65 | WANG X Y, FU C Y, HE J W, et al. StrongFusionMOT: a multi-object tracking method based on LiDAR-camera fusion[J]. IEEE Sensors Journal, 2023, 23(11): 11241-11252. |
66 | BüCHNER M, VALADA A. 3D multi-object tracking using graph neural networks with cross-edge modality attention[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 9707-9714. |
67 | XIE B Q, YANG Z M, YANG L, et al. AMMF: attention-based multi-phase multi-task fusion for small contour object 3D detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(2): 1692-1701. |
68 | CHIU H K, LI J, AMBRU? R, et al. Probabilistic 3D multi-modal, multi-object tracking for autonomous driving[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2021: 14227-14233. |
69 | SHAHVERDY M, FATHY M, BERANGI R, et al. Driver behavior detection and classification using deep convolutional neural networks[J]. Expert Systems with Applications, 2020, 149: 113240. |
70 | JEONG D, BAEK M, LEE S S. Long-term prediction of vehicle trajectory based on a deep neural network[C]//Proceedings of the 2017 International Conference on Information and Communication Technology Convergence (ICTC). Piscataway: IEEE Press, 2017: 725-727. |
71 | YANG L, LEI W M, ZHANG W, et al. Dual-flow network with attention for autonomous driving[J]. Frontiers in Neurorobotics, 2023, 16: 978225. |
72 | KIM C J, LEE M J, HWANG K H, et al. End-to-end deep learning-based autonomous driving control for high-speed environment[J]. The Journal of Supercomputing, 2021: 1961-1982. |
73 | KATUWANDENIYA K, MIRO J V, DANTANARAYANA L. End-to-end joint intention estimation for shared control personal mobility navigation[C]//Proceedings of the 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV). Piscataway: IEEE Press, 2020: 1-6. |
74 | LI X, WANG Y T, WANG K F, et al. The ParallelEye-CS dataset: constructing artificial scenes for evaluating the visual intelligence of intelligent vehicles[C]//Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV). Piscataway: IEEE Press, 2018: 37-42. |
75 | LI X, WANG K F, GU X F, et al. ParallelEye pipeline: an effective method to synthesize images for improving the visual intelligence of intelligent vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(9): 5545-5556. |
76 | MIAO Q H, LV Y S, HUANG M, et al. Parallel learning: overview and perspective for computational learning across Syn2Real and Sim2Real[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(3): 603-631. |
77 | LI L, LIN Y L, ZHENG N N, et al. Parallel learning: a perspective and a framework[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(3): 389-395. |
78 | SHEN Y, LIU Y H, TIAN Y L, et al. Parallel sensing in metaverses: virtual-real interactive smart systems for "6S" sensing[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(12): 2047-2054. |
79 | 王坤峰, 苟超, 王飞跃. 平行视觉: 基于ACP的智能视觉计算方法[J]. 自动化学报, 2016, 42(10): 1490-1500. |
WANG K F, GOU C, WANG F Y. Parallel vision: an ACP-based approach to intelligent vision computing[J]. Acta Automatica Sinica, 2016, 42(10): 1490-1500. | |
80 | 李轩, 王飞跃. 面向智能驾驶的平行视觉感知: 基本概念、框架与应用[J]. 中国图象图形学报, 2021, 26(1): 67-81. |
LI X, WANG F Y. Parallel visual perception for intelligent driving: basic concept, framework and application[J]. Journal of Image and Graphics, 2021, 26(1): 67-81. | |
81 | LIU Y H, SHEN L, FAN L L, et al, Parallel radars: from digital twins to digital intelligence for smart radar systems[J]. Sensors, 2022, 22(24): 9930. |
82 | LI X, TIAN Y L, YE P J, et al. A novel scenarios engineering methodology for foundation models in metaverse[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(4): 2148-2159. |
83 | WANG F Y. New control paradigm for industry 5.0: from big models to foundation control and management[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(8): 1643-1646. |
84 | LI J J, LIANG X L, QIN R, et al. From DAO to TAO: finding the essence of decentralization[C]//Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Piscataway: IEEE Press, 2023: 4283-4288. |
85 | LI J J, WANG F Y. The TAO of blockchain intelligence for intelligent web 3.0[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(12): 2183-2186. |
86 | WANG Z R, LV C, WANG F Y. A new era of intelligent vehicles and intelligent transportation systems: digital twins and parallel intelligence[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(4): 2619-2627. |
87 | 王飞跃, 王雨桐. 数字科学家与平行科学:AI4S和S4AI的本源与目标[J]. 中国科学院院刊, 2024, 39(1): 27-33. |
WANG F Y, WANG Y T. Digital scientists and parallel sciences: the origin and goal of AI for Science and Science for AI[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(1): 27-33. |
[1] | Quancheng DU, Xiao WANG, Lingxi LI, Huansheng NING. Key problems and progress of pedestrian trajectory prediction methods: the state of the art and prospects [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(2): 143-162. |
[2] | Zhe HUANG, Yongcai WANG, Deying LI. A survey of 3D object detection algorithms [J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(1): 7-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|