[12] |
LIU K , ZHENG T , WEI L . A software birthmark based on system call and program data dependence[C]// Web Information System and Application Conference. IEEE, 2015: 105-110.
|
[13] |
韩金, 单征, 赵炳麟 ,等. 基于软件基因的 Android 恶意软件检测与分类[J]. 计算机应用研究, 2019(6).
|
|
HAN J , SHAN Z , ZHAO B L ,et al. Detection and classification of Android malware based on malware gene[J]. Application Research of Computers, 2019(6).
|
[14] |
赵晶玲, 陈石磊, 曹梦晨 ,等. 基于离线汇编指令流分析的恶意程序算法识别技术[J]. 清华大学学报(自然科学版), 2016(5): 484-492.
|
|
ZHAO J L , CHEN S L , CAO M C ,et al. Malware algorithm recognition based on offline instruction-flow analyse[J]. Journal of Tsinghua University(Science and Technology), 2016(5): 484-492.
|
[15] |
陈晨 . 基于操作码行为深度学习的恶意代码检测方法[D]. 黑龙江:哈尔滨工业大学, 2013.
|
|
CHEN C . Malicious code detection based on opcode behavior deep learning[D]. Heilongjiang:Harbin Institute of Technology, 2013.
|
[16] |
BERRAR D , DUBITZKY W . Information gain[M]. Springer New York, 2013.
|
[17] |
RONG X . Word2vec parameter learning explained[J]. Computer Science, 2014.
|
[18] |
MIKOLOV T , CHEN K , CORRADO G ,et al. Efficient estimation of word representations in vector space[J]. Computer Science, 2013.
|
[19] |
MIKOLOV T , SUTSKEVER I , CHEN K ,et al. Distributed Representations of Words and Phrases and their Compositionality[J].NIPS'13 Proceedings of the 26th International Conference on Neural Information Processing Systems, 2013. 3111-3119.
|
[20] |
周志华 . 机器学习:= Machine learning[M]. 北京: 清华大学出版社, 2016.
|
|
ZHOU Z H . Machine learning[M]. Beijing: Tsinghua University PressPress, 2016.
|
[21] |
CHUA L O , ROSKA T . CNN paradigm[J]. IEEE Transactions on Circuits & Systems I Fundamental Theory & Applications, 1993,40(3): 147-156.
|
[1] |
2017 年度互联网安全报告[EB/OL]. .
|
|
2017 Internet security report[EB/OL]. .
|
[2] |
阮斌 . 《2017年中国网络安全报告》发布[J]. 计算机与网络, 2018(5).
|
|
RUAN B . 2017 China cyber security report released[J]. Computer& Network, 2018(5).
|
[3] |
SANTOS I , BREZO F , NIEVES J ,et al. Idea:opcode- sequence-based malware detection[C]// International Conference on Engineering Secure Software and Systems. Springer-Verlag, 2010: 35-43.
|
[4] |
孙博文, 黄炎裔, 温俏琨 ,等. 基于静态多特征融合的恶意软件分类方法[J]. 网络与信息安全学报, 2017,3(11): 68-76.
|
|
SUN B W , HUANG Y Y , WEN Q K ,et al. Malware classification method based on static multiple-feature fusion[J]. Chinese Journal of Network and Information Security, 2017,3(11): 68-76.
|
[5] |
白金荣, 王俊峰, 赵宗渠 . 基于 PE 静态结构特征的恶意软件检测方法[J]. 计算机科学, 2013,40(01): 122-126.
|
|
BAI J R , WANG J F , ZHAO Z Q . Malware detection approach based on structural feature of PE file[J]. Computer Science, 2013,40(01): 122-126.
|
[6] |
QEMU[EB/OL]. .
|
[7] |
Pin-a dynamic binary instrumentation tool[EB/OL]. .
|
[8] |
曹梦晨 . 基于沙箱指令流快照的恶意程序智能识别技术研究[D]. 北京邮电大学, 2017.
|
|
CAO M C , . Research on malware intelligent recognition technology based on sandbox instruction flow snapshot[D]// Beijing University of Posts and Telecommunications, 2017.
|
[9] |
LI H J , TIEN C W , TIEN C W ,et al. AOS:An optimized sandbox method used in behavior-based malware detection[C]// International Conference on Machine Learning and Cybernetics. IEEE, 2011: 404-409.
|
[10] |
FIRDAUSI I , LIM C , ERWIN A ,et al. Analysis of machine learning techniques used in behavior-based malware detection[C]// Second International Conference on Advances in Computing,Control and Telecommunication Technologies. 2010: 201-203.
|
[11] |
CHAN P P F , HUI L C K , YIU S M . Dynamic software birthmark for java based on heap memory analysis[M]// Communications and Multimedia Security. Springer Berlin Heidelberg, 2011: 94-107.
|