[1] |
《国家网络空间安全战略》(全文)[J]. 中国信息安全, 2017(1): 26-31.
|
|
“National Cyberspace Security Strategy” (full-text)[J]. China Information Security, 2017(1): 26-31.
|
[2] |
WU Z , PAN S , CHEN F ,et al. A comprehensive survey on graph neural networks[J]. arXiv:1901.00596, 2019.
|
[3] |
PHAM N H , NGUYEN T T , NGUYEN H A ,et al. Detection of recurring software vulnerabilities[C]// 25th IEEE/ACM International Conference on Automated Software Engineering. 2010.
|
[4] |
YAMAGUCHI F , GOLDE N , ARP D ,et al. Modeling and discovering vulnerabilities with code property graphs[C]// IEEE Symposium on Security and Privacy. 2014.
|
[5] |
LIN G , ZHANG J , LUO W ,et al. POSTER:vulnerability discovery with function representation learning from unlabeled projects[C]// ACM Sigsac Conference. 2017.
|
[6] |
RUSSELL R , KIM L , HAMILTON L ,et al. Automated vulnerability detection in source code using deep representation learning[C]// 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). 2018: 757-762.
|
[7] |
XU X , LIU C , FENG Q ,et al. Neural network-based graph embedding for cross-platform binary code similarity detection[C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security-(CCS′17). 2017: 363-376.
|
[8] |
LI Y , GU C , DULLIEN T ,et al. Graph matching networks for learning the similarity of graph structured objects[C]// Thirty-sixth International Conference on Machine Learning(ICML 2019). 2019.
|
[9] |
YU Z , CAO R , TANG Q ,et al. Order matters:semantic-aware neural networks for binary code similarity detection[C]// The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20). 2020.
|
[10] |
DUAN Y , LI X , WANG J ,et al. DeepBinDiff:learning program-wide code representations for binary diffing[C]// Proceedings 2020 Network and Distributed System Security Symposium. 2020.
|
[11] |
李珍, 邹德清, 王泽丽 ,等. 面向源代码的软件漏洞静态检测综述[J]. 网络与信息安全学报, 2019,5(1): 1-14.
|
|
LI Z , ZOU D Q , WANG Z L ,et al. Survey on static software vulnerability detection for source code[J]. Chinese Journal of Network and Information Security, 2019,5(1): 1-14.
|
[12] |
GORI M , GABRIELE M , FRANCO S . A new model for learning in graph domains[C]// IEEE International Joint Conference on Neural Networks. 2005.
|
[13] |
SCARSELLI F , GORI M , TSOI A C ,et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009,20(1): 61-80.
|
[14] |
GILMER J , SCHOENHOLZ S S , RILEY P F ,et al. Neural message passing for Quantum chemistry[C]// Proceedings of the 34th International Conference on Machine Learning-Volume 70 (ICML’17). 2011: 1263-1272.
|
[15] |
MIKOLOV T , CHEN K , CORRADO G ,et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.
|
[16] |
KIPF T N , WELLING M . Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.
|
[17] |
NIST software assurance reference dataset project[EB].
|
[18] |
Flawfinder[EB].
|
[19] |
Rough-auditing-tool-for-security[EB].
|