[1] |
LI B L , YU S W . Research on topic detection and tracking[J]. Computer Engineering and Applications, 2003,39(17): 7-10.
|
[2] |
关晓惠, 钱亚冠, 孙欣欣 . 一种改进的基于局部密度的聚类算法[J]. 电信科学, 2016,32(1): 54-59.
|
|
GUAN X H , QIAN Y G , SUN X X . An improved clustering algorithm basing on local density[J]. Telecommunications Science, 2016,32(1): 54-59.
|
[3] |
周坚, 石永革, 何美斌 . 基于A-D模型的K-means算法在通话异常客户挖掘中的应用[J]. 电信科学, 2018,34(4): 81-89.
|
|
ZHOU J , SHI Y G , HE M B ,et al. Application of K-means algorithm based on A-D model in calling abnormal customer mining[J]. Telecommunications Science, 2018,34(4): 81-89.
|
[4] |
MOHD M , CRESTANI F , RUTHVEN I . Construction of topics and clusters in topic detection and tracking tasks[C]// International Conference on Semantic Technology and Information Retrieval,June 28-29,2011,Putrajaya,Malaysia. Piscataway:IEEE Press, 2011: 171-174.
|
[5] |
ZHANG X M , LI Z J , CHAO W H . Research of automatic topic detection based on incremental clustering[J]. Journal of Software, 2012,23(6): 1578-1587.
|
[6] |
WANG W , YANG W , QI H F . Netword hotspt topic detection algorithm based on multi-center model[J]. Journal of Nanjing University of Science and Technology, 2009,33(4): 422-421.
|
[7] |
CHENG W , LONG Z Y . Oline topic detection algorithm for internet news[J]. Computer Engineering, 2009,35(18): 28-38.
|
[8] |
LI C , SUN A , DATTA A . Twevent:segment-based event detection from tweets[C]// International Conference on Information and Knowledge Management,Oct 29-Nov 2,2012,San Francisco,USA. Piscataway:IEEE Press, 2012: 155-164.
|
[9] |
VISWANATH P , SURESH B V . Rough-DBSCAN:a fast hybrid density based clustering method for large data sets[J]. Pattern Recognition Letters, 2009,30(16): 1477-1488.
|
[10] |
KUMAR K M , RAMA M R A . A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method[J]. Pattern Recognition, 2016(58): 39-48.
|
[11] |
谢静瑶, 解思江, 焦阳 ,等. 一种改进的启发式自适应DBSCAN 聚类算法的研究及其在电力系统信息安全预警分析中的应用[J]. 电信科学, 2017,33(Z1): 117-122.
|
|
XIE J Y , XIE S J , JIAO Y ,et al. Research on an improved heuristic auto-adapted DBSCAN clustering algorithm and the application in power system information security early-warning analysis[J]. Telecommunications Science, 2017,33(Z1): 117-122.
|
[12] |
SUN M X , LIU C Q . Research on hot topic detection based on DBSCAN algorithm and inter sentence relationship[J]. Library& Information Service, 2017(12): 113-121.
|
[13] |
RODRIGUEZ A , LAIO A . Clustering by fast search and find of density peaks[J]. Science, 2014,344(6191): 1492-1496.
|
[14] |
WEI M , XU W R , JUN G . A chinese text classifier based on N-gram language model and chain augmented na?ve bayesian classifier[J]. Journal of Chinese Information Processing, 2006,20(3): 29-35.
|
[15] |
WU Y , WEI G , LI H . Word segmentation algorithm for chinese language based on N-gram models and machine learning[J]. Journal of Electronics and Information Technology, 2001,23(11): 1148-1153.
|
[16] |
TANG G , XIA Y Q , ZHANG M ,et al. Cross-lingual document clustering based on similarity space model[J]. Journal of Chinese Information Processing, 2016,26(2): 116-120.
|
[17] |
WU C Y . Model of Chinese words rough segmentation based on bi-gram and N-most-probability method[J]. Journal of Computer Applications, 2007,27(2): 2902-2905.
|
[18] |
MA C L , SHAN H , MA T . Improved density peaks based clustering algorithm with strategy choosing cluster center automatically[J]. Computer Science, 2016,43(7): 255-280.
|
[19] |
CAO Z W , ZHOU Y . Design and implementation of JP algorithm based on MapReduce[J]. Computer Engineering, 2012,38(24): 14-16.
|
[20] |
VATHY-FOGARASSY A , KISS A , ABONYI J . Improvement of Jarvis-Patrick clustering based on fuzzy similarity[C]// International Workshop on Fuzzy Logic and Applications:Applications of Fuzzy Sets Theory,July 7-10,2007,Camogli,Italy. New York:ACM Press, 2007: 195-202.
|
[21] |
CHENG Y Y , ZHOU P . Improved K-means clustering algorithm for dynamic allocation cluster center[J]. Computer Technology and Development, 2017,27(2): 33-36.
|